Блок питания светодиодной ленты из энергосберегающей лампы. Как из энергосберегающей лампы сделать светодиодную

Тема переделки или модернизации вышедших из строя люминесцентных (энергосберегающих) ламп в светодиодные поднималась неоднократно. Да простят меня авторы этих статей, но большинство предложенных вариантов малоэффективны и уж точно не эстетичны. Виной тому сложности с элементной базой и комплектующими, а так же наш менталитет, когда мы пытаемся слепить конфетку из …
Но спасибо корейцам, выпустившим в прошлом году замечательный светодиодный модуль Seoul Semiconductors Acrich2, который подключается к сети переменного тока 220 В без дополнительного источника питания. Производитель гарантирует, что при соблюдении условий эксплуатации (рекомендуемая рабочая температура не выше 70 ºС) данный модуль честно отработает не менее 50 000 часов. Не будем вдаваться в технические подробности, все понятно из рисунка.

В качестве комментария
По роду своей деятельности имею богатый опыт работы с различными источниками питания. Так вот указанный корейцами ресурс блока питания в 15 000 часов завышен примерно в 2 раза, это при условии использования высококачественных электролитов. Китайский же ширпотреб, имеющийся сейчас в широкой продаже, явно не входит в категорию качественных товаров.

Итак, с источником света разобрались. Следующий шаг – как его охладить. Городить банальный ребристый радиатор – не эстетично и неудобно. И тут без везения не обошлось. Оказывается, в России разработан и выпускается радиаторный профиль АП888, специально предназначенный для модулей этой серии.

Профиль универсальный, предназначен для установки трех типов модулей Acriche: AW3221 (4 Вт) и Acrich2 на 8 и 12 Вт.

Дальнейшая работа по модернизации перегоревшей энергосберегающей лампы не составила никакого труда и заняла от силы 15-20 минут.

1 Отрезать радиатор в размер, необходимый для обеспечения эффективного охлаждения модуля. Поставщик профиля рекомендует следующие размеры для обеспечения рабочей температуры не более 70 ºС:
- 4 Вт – 10-15 мм;
- 8 Вт – 30-35 мм;
- 12 Вт – 40-45 мм.
В данном случае «кашу маслом не испортишь», и я для 8 Вт взял радиатор 50 мм.


3 Просверлить отверстия в крышке корпуса цоколя для крепления радиатора.

4 Все составные части – радиатор, модуль и фильтр к модулю, готовы к сборке.

5 Дальше все просто. Устанавливаем модуль на радиатор, не забудьте про теплопроводную пасту (рекомендую КТП-8). Крепим крышку корпуса цоколя к радиатору. Подпаиваем провода к модулю и фильтру. Затем все впаиваем в цоколь.


Подключение мощных светодиодов в осветительных устройствах осуществляется через электронные драйверы, которые стабилизируют ток, на своём выходе.

В наше время большое распространение получили так называемые энергосберегающие люминисцентные лампы (компактные люминисцентные лампы –КЛЛ).Но со временем они выходят из строя. Одна из причин неисправности –перегорание нити накала лампы. Не спешите утилизировать такие лампы потому, что в электронной плате содержатся много компонентов которые можно использовать в дальнейшее в других самодельных устройствах. Это дроссели, транзисторы, диоды, конденсаторы. Обычно, у этих ламп электронная плата исправна, что дает возможность использования в качестве блока питания или драйвера для светодиода. В результате таким образом получим бесплатный драйвер для подключения светодиодов, тем более это интересно.

Можно посмотреть процесс изготовления самоделки в видео:

Перечень инструментов и материалов
-энергосберегающая люминисцентная лампа;
-отвертка;
-паяльник;
-тестер;
-светодиод белого свечения 10вт;
-эмальпровод диаметром 0,4мм;
-термопаста;
-диоды марки HER, FR, UF на 1-2А
-настольная лампа.

Шаг первый. Разборка лампы.
Разбираем энергосберегающую люминисцентную лампу аккуратно поддев отверткой. Колбу лампы нельзя разбивать так, как внутри находятся пары ртути. Прозваниваем нити накала колбы тестером. Если хоть одна нить показывает обрыв, значит колба неисправна. Если есть исправная аналогичная лампа, то можно подключить колбу от нее к переделываемой электронной плате, чтобы удостовериться в ее исправности.


Шаг второй. Переделка электронного преобразователя.
Для переделки я использовал лампу мощностью 20Вт, дроссель которой выдержать нагрузку до 20 Вт. Для светодиода мощностью 10Вт это достаточно. Если нужно подключить более мощную нагрузку, можно применить электронную плату преобразователя лампы с соответственной мощности, или поменять дроссель с сердечником большего размера.

Также возможно запитать светодиоды меньшей мощности, подобрав требуемое напряжение количеством витков на дросселе.
Смонтировал перемычки из провода в на штырьках для подключения нитей накала лампы.



Поверх первичной обмотки дросселя нужно намотать 20 витков эмальпровода. Затем припаиваем вторичную намотанную обмотку к выпрямительному диодному мостику. Подключаем к лампе напряжение 220В и измеряем напряжение на выходе с выпрямителя. Оно составило 9,7В. Светодиод, подключенный через амперметр, потребляет ток в 0,83А. У этого светодиода номинальный ток равен 900мА, но чтобы увеличить его ресурс в работе специально занижено потребление по току. Диодный мостик можно собрать на плате навесным монтажом.

Схема переделанной электронной платы преобразователя. В результате из дросселя получаем трансформатор с подключенным выпрямителем. Зеленым цветом показаны добавленные компоненты.


Шаг третий. Сборка светодиодной настольной лампы.
Патрон для лампы на 220 вольт убираем. Светодиод мощностью 10Вт установил на термопасту на металлический абажур старой настольной лампы. Абажур настольной лампы служит теплоотводом для светодиода.


Электронную плату питания и диодный мост разместил в корпусе подставки настольной лампы.

В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.
Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.


Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

Отличие схемы КЛЛ от импульсного БП

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для предобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Импульсный трансформатор для блока питания

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. Проверено на практике.

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Ёмкость входного фильтра и пульсации напряжения

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мальниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

Мощность, подводимая к нагрузке – 20 Ватт.
Частота автоколебаний без нагрузки – 26 кГц.
Частота автоколебаний при максимальной нагрузке – 32 кГц
Температура трансформатора – 60ºС
Температура транзисторов – 42ºС

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.
Мощность, выделяемая на нагрузке – 100 Ватт.
Частота автоколебаний при максимальной нагрузке – 90 кГц.
Частота автоколебаний без нагрузки – 28,5 кГц.
Температура транзисторов – 75ºC.
Площадь радиаторов каждого транзистора – 27см².
Температура дросселя TV1 – 45ºC.
TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Выпрямитель

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.
2. Схема с нулевой точкой.

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

Пример.
Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.

100 / 5 * 0,4 = 8(Ватт)

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

100 / 5 * 0,8 * 2 = 32(Ватт).

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности.

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

Будьте осторожны, берегитесь ожога!
Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!
То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Каково назначение элементов схемы импульсного блока питания?

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 % . Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

Устройство компактной люминесцентной лампы (КЛЛ).

Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц . В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA . Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003 . Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

Миниатюрный симметричный динистор DB3 (VS1 ) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

Диодный мост , выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1 , дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии:) вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1 , который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

Дроссель L2 обычно собран на Ш -образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор . На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1 . Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

Ремонт бытовых люминесцентных ламп с электронным балластом.

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности .

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью .

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Разборка люминесцентной лампы с электронным балластом.

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Восстановление работоспособности ламп с электронным балластом.

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра . Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

    С холодным запуском

    С горячим запуском

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC - терморезистор) . На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.

Энергосберегающие лампы широко применяются в быту и на производстве, со временем они приходят в негодность, а между тем многие из них после несложного ремонта можно восстановить. Если вышел из строя сам светильник, то из электронной «начинки» можно сделать довольно мощный блок питания на любое нужное напряжение.

Как выглядит блок питания из энергосберегающей лампы

В быту часто требуется компактный, но в то же время мощный низковольтный блок питания, сделать такой можно, используя вышедшую из строя энергосберегающую лампу. В лампах чаще всего выходят из строя светильники, а блок питания остается в рабочем состоянии.

Для того чтобы сделать блок питания, необходимо разобраться в принципе работы электроники, содержащейся в энергосберегающей лампе.

Достоинства импульсных блоков питания

В последние годы наметилась явная тенденция к уходу от классических трансформаторных блоков питания к импульсным. Это связано, в первую очередь, с большими недостатками трансформаторных блоков питания, таких как большая масса, малая перегрузочная способность, малый КПД.

Устранение этих недостатков в импульсных блоках питания, а также развитие элементной базы позволило широко использовать эти узлы питания для устройств с мощностью от единиц ватт до многих киловатт.

Схема блока питания

Принцип работы импульсного блока питания в энергосберегающей лампе точно такой же, как в любом другом устройстве, например, в компьютере или телевизоре.

В общих чертах работу импульсного блока питания можно описать следующим образом:

  • Переменный сетевой ток преобразуется в постоянный без изменения его напряжения, т.е. 220 В.
  • Широтно-импульсный преобразователь на транзисторах превращает постоянное напряжение в прямоугольные импульсы, с частотой от 20 до 40 кГц (в зависимости от модели лампы).
  • Это напряжение через дроссель подается на светильник.

Рассмотрим схему и порядок работы импульсного блока питания лампы (рисунок ниже) более подробно.

Схема электронного балласта энергосберегающей лампы

Сетевое напряжение поступает на мостовой выпрямитель(VD1-VD4) через ограничительный резистор R 0 небольшого сопротивления, далее выпрямленное напряжение сглаживается на фильтрующем высоковольтном конденсаторе (С 0), и через сглаживающий фильтр (L0) подается на транзисторный преобразователь.

Запуск транзисторного преобразователя происходит в тот момент, когда напряжение на конденсаторе С1 превысит порог открытия динистора VD2. Это запустит в работу генератор на транзисторах VT1 и VT2, благодаря чему возникает автогенерация на частоте около 20 кГц.

Другие элементы схемы, такие как R2, C8 и C11, играют вспомогательную роль, облегчая запуск генератора. Резисторы R7 и R8 увеличивают скорость закрытия транзисторов.

А резисторы R5 и R6 служат как ограничительные в цепях баз транзисторов, R3 и R4 предохраняют их от насыщения, а в случае пробоя играют роль предохранителей.

Диоды VD7, VD6 – защитные, хотя во многих транзисторах, предназначенных для работы в подобных устройствах, такие диоды встроены.

TV1 – трансформатор, с его обмоток TV1-1 и TV1-2, напряжение обратной связи с выхода генератора подается в базовые цепи транзисторов, создавая тем самым условия для работы генератора.

На рисунке выше красным цветом выделены детали, подлежащие удалению при переделке блока, точки А–А` нужно соединить перемычкой.

Переделка блока

Перед тем как приступить к переделке блока питания, следует определиться с тем, какую мощность тока необходимо иметь на выходе, от этого будет зависеть глубина модернизации. Так, если требуется мощность 20-30 Вт, то переделка будет минимальной и не потребует большого вмешательства в существующую схему. Если необходимо получить мощность 50 и более ватт, то модернизация потребуется более основательная.

Следует иметь в виду, что на выходе блока питания будет постоянное напряжение, а не переменное. Получить от такого блока питания переменное напряжение частотой 50 Гц невозможно.

Определяем мощность

Мощность можно вычислить по формуле:

Р – мощность, Вт;

I – сила тока, А;

U – напряжение, В.

Например, возьмем блок питания со следующими параметрами: напряжение – 12 В, сила тока – 2 А, тогда мощность будет:

С учетом перегрузки можно принять 24-26 Вт, так что для изготовления такого блока потребуется минимальное вмешательство в схему энергосберегающей лампы мощностью 25 Вт.

Новые детали

Добавление новых деталей в схему

Добавляемые детали выделены красным цветом, это:

  • диодный мост VD14-VD17;
  • два конденсатора С 9 , С 10 ;
  • дополнительная обмотка, размещенная на балластном дросселе L5, количество витков подбирается опытным путем.

Добавляемая обмотка на дроссель играет еще одну немаловажную роль разделительного трансформатора, предохраняя от попадания сетевого напряжения на выход блока питания.

Чтобы определить необходимое количество витков в добавляемой обмотке, следует проделать следующие действия:

  1. на дроссель наматывают временную обмотку, примерно 10 витков любого провода;
  2. соединяют с нагрузочным сопротивлением, мощностью не менее 30 Вт и сопротивлением примерно 5-6 Ом;
  3. включают в сеть, замеряют напряжение на нагрузочном сопротивлении;
  4. полученное значение делят на количество витков, узнают, сколько вольт приходится на 1 виток;
  5. вычисляют необходимое число витков для постоянной обмотки.

Более детальный расчет приведен ниже.

Испытательное включение переделанного блока питания

После этого легко вычислить необходимое число витков. Для этого напряжение, которое планируется получить от этого блока, делят на напряжение одного витка, получается количество витков, к полученному результату добавляют про запас примерно 5-10%.

W=U вых /U вит, где

W – количество витков;

U вых – требуемое выходное напряжение блока питания;

U вит – напряжение на один виток.

Намотка дополнительной обмотки на штатный дроссель

Оригинальная обмотка дросселя находится под напряжением сети! При намотке поверх нее дополнительной обмотки необходимо предусмотреть межобмоточную изоляцию, особенно если наматывается провод типа ПЭЛ, в эмалевой изоляции. Для межобмоточной изоляции можно применить ленту из политетрафторэтилена для уплотнения резьбовых соединений, которой пользуются сантехники, ее толщина всего 0,2 мм.

Мощность в таком блоке ограничена габаритной мощностью используемого трансформатора и допустимым током транзисторов.

Блок питания повышенной мощности

Для этого потребуется более сложная модернизация:

  • дополнительный трансформатор на ферритовом кольце;
  • замена транзисторов;
  • установка транзисторов на радиаторы;
  • увеличение емкости некоторых конденсаторов.

В результате такой модернизации получают блок питания мощностью до 100 Вт, при выходном напряжении 12 В. Он способен обеспечить ток 8-9 ампер. Этого достаточно для питания, например, шуруповерта средней мощности.

Схема модернизированного блока питания приведена на рисунке ниже.

Блок питания мощностью 100 Вт

Как видно на схеме, резистор R 0 заменен на более мощный (3-ваттный), его сопротивление уменьшено до 5 Ом. Его можно заменить на два 2-ваттных по 10 Ом, соединив их параллельно. Далее, С 0 – его емкость увеличена до 100 мкф, с рабочим напряжением 350 В. Если нежелательно увеличивать габариты блока питания, то можно подыскать миниатюрный конденсатор такой емкости, в частности, его можно взять из фотоаппарата-мыльницы.

Для обеспечения надежной работы блока полезно несколько уменьшить номиналы резисторов R 5 и R 6 , до 18–15 Ом, а также увеличить мощность резисторов R 7 , R 8 и R 3 , R 4 . Если частота генерации окажется невысокой, то следует увеличить номиналы конденсаторов C­ 3 и C 4 – 68n.

Самым сложным может оказаться изготовление трансформатора. Для этой цели в импульсных блоках чаще всего используют ферритовые кольца соответствующих размеров и магнитной проницаемости.

Расчет таких трансформаторов довольно сложен, но в интернете есть много программ, с помощью которых это очень легко сделать, например, «Программа расчета импульсного трансформатора Lite-CalcIT».

Как выглядит импульсный трансформатор

Расчет, проведенный с помощью этой программы, дал следующие результаты:

Для сердечника используется ферритовое кольцо, его внешний диаметр – 40, внутренний – 22, а толщина – 20 мм. Первичная обмотка проводом ПЭЛ – 0,85 мм 2 имеет 63 витка, а две вторичных тем же проводом – 12.

Вторичную обмотку необходимо наматывать сразу в два провода, при этом их желательно предварительно слегка скрутить между собой по всей длине, так как эти трансформаторы очень чувствительны к несимметричности обмоток. Если не соблюдать это условие, то диоды VD14 и VD15 будут нагреваться неравномерно, а это еще больше увеличит несимметричность что, в конце концов, выведет их из строя.

Зато такие трансформаторы легко прощают значительные ошибки при расчете количества витков, до 30%.

Так как эта схема изначально рассчитывалась для работы с лампой мощностью 20 Вт, то установлены транзисторы 13003. На рисунке ниже позиция (1) – транзисторы средней мощности, их следует заменить на более мощные, например, 13007, как на позиции (2). Возможно, их придется установить на металлическую пластину (радиатор), площадью около 30 см 2 .

Испытание

Пробное включение стоит проводить с соблюдением некоторых мер предосторожности, чтобы не вывести из строя блок питания:

  1. Первое пробное включение производить через лампу накаливания 100 Вт, чтобы ограничить ток на блок питания.
  2. К выходу обязательно подключить нагрузочный резистор 3-4 Ома, мощностью 50-60 Вт.
  3. Если все прошло штатно, дать поработать 5-10 мин., отключить и проверить степень нагрева трансформатора, транзисторов и диодов выпрямителя.

Если в процессе замены деталей не были допущены ошибки, блок питания должен заработать без проблем.

Если пробное включение показало работоспособность блока, остается испытать его в режиме полной нагрузки. Для этого сопротивление нагрузочного резистора уменьшить до 1,2-2 Ом и включить его в сеть напрямую без лампочки на 1-2 минуты. После чего отключить и проверить температуру транзисторов: если она превышает 60 0 С, то их придется установить на радиаторы.

Поделиться