Lc метр на atmega8 с дисплеем nokia. LC-метр — приставка к мультиметру

Рассмотрена схема измерителя емкости конденсаторов и индуктивности катушек, выполненная всего на пяти транзисторах и, несмотря на свою простоту и доступность, позволяет в большом диапазоне определять с приемлемой точностью емкость и индуктивность катушек. Имеется четыре поддиапазона для конденсаторов и целых пять поддиапазонов катушек. После достаточно простой процедуры калибровки, с применением двух подстроечных сопротивлений, максимальная погрешность будет около 3%, что согласитесь, для радиолюбительской самоделки совсем не плохо.

Предлагаю спаять своими руками эту простую схему LC-метра. Основой радиолюбительской самоделки служит генератор, выполненный на VT1, VT2 и радиокомпонентах обвязки. Его рабочая частота определяется параметрами LC колебательного контура, который состоит из неизвестной емкости конденсатора Cx и параллельно подключенной катушки L1, в режиме определения неизвестной емкости - контакты X1 и X2 должны быть замкнуты, а в режиме измерения индуктивности Lx, она подключается последовательно с катушкой L1 и параллельно соединенному конденсатору C1.

С подключением к LC-метру неизвестного элемента, начинает работать генератор на какой-то частоте, которая фиксируется очень простым частотомером, собранным на транзисторах VT3 и VT4. Затем значение частоты преобразуется в постоянный ток, который отклоняет стрелку микроамперметра.

Измеритель индуктивности сборка схемы. Соединительные провода рекомендуется делать по возможности максимально короткими для подключения неизвестных элементов. После окончания процесса общей сборки необходимо откалибровать конструкцию во всех диапазонах.

Калибровка осуществляется с помощью подбора сопротивлений подстроечных резисторов R12 и R15 при подключении к измерительным выводам радиоэлементов с заранее известными номиналами. Так как в одном диапазоне номинал подстроечных резисторов будет один, а в другом он будет другой, то необходимо определить нечто среднее для всех диапазонов, при этом погрешность измерения не должна выйти за 3%.

Этот достаточно точный LC метр собран на микроконтроллере PIC16F628A. В основе конструкции LC метра лежит частотомер с LC осциллятором, частота которого изменяется в зависимости от измеряемых величин индуктивности или емкости, и в результате вычисляется. Точность частоты доходит до 1 Гц.

Реле RL1 необходимо для выбора L или C режима измерения. Счетчик работает на основе математических уравнений. Для обоих неизвестных L и C , уравнения 1 и 2 являются общими.


Калибровка

При включении питания осуществляется автоматическая калибровка прибора. Начальный рабочий режим - индуктивность. Подождите пару минут для прогрева цепей устройства, затем нажмите тумблер "zero", для повторной калибровки. Дисплей должен вывести значения ind = 0.00 . Теперь подсоедините тестовый номинал индуктивности, например 10uH или 100uH. LC-метр должен вывести на экран точное значение. Для настройки счетчика имеются перемычки Jp1 ~ Jp4 .

Представленный ниже проект измерителя индуктивности очень прост для повторения состоит из минимума радиокомпонентов. Диапазоны измерения индуктивности : - 10нГ - 1000нГ; 1мкГ - 1000мкГ; 1мГ - 100мГ. Диапазоны измерения емкости: - 0.1пФ - 1000пФ - 1нФ - 900нФ

Измерительное устройство поддерживает автокалибровку при включении питания, что исключает вероятность человеческого фактора при ручной калибровке. Абсолютно, в любой момент можно заново откалибровать измеритель, просто нажав кнопку сброса. В приборе имеется автоматический выбор диапазона измерений.

В конструкции устройства нет необходимости использования каких-либо прецизионных и дорогих радио компонентов. Единственное, нужно иметь одну "внешнюю" емкость, номинал которой известен с большой точностью. Два конденсатора емкостью в 1000 пФ должны быть нормальногно качества, желательно использовать полистирольные, а две емкости по 10 мкФ должны быть танталовыми.


Кварц нужно взять точно на 4.000 МГц. Каждый 1% несоответствия частоты, приведет к 2% ошибке измерения. Реле с малым током катушки, т.к. микроконтроллер не способен обеспечить ток выше 30 мА. Не забудьте параллельно катушке реле для подавления обратного тока и исключения дребезга поставить диод.

Печатная плата и прошивка микроконтроллера по ссылке выше.

Answer

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry"s standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five http://jquery2dotnet.com/ centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.

ИЗМЕРИТЕЛЬ ЁМКОСТИ И ИНДУКТИВНОСТИ

Схема LC метра



Печатная плата



Диапазоны измерений индуктивности:
10nH - 1000nH
1uH - 1000uH
1mH - 100mH

Диапазоны измерения емкости:
0.1pF - 1000pF
1nF - 900nF

Большим плюсом устройства является автоматическая калибровка при включении питания, поэтому исключена ошибка в калибровке, что присуще некоторым аналогичным схемам индуктометров, особенно аналоговых. При необходимости, можно выполнить повторную калибровку в любой момент, нажатием кнопки reset.

Компоненты прибора


Слишком точные компоненты являются необязательными, за исключением одного (или более) конденсаторов, которые используются для калибровки измерителя. Два 1000 пФ конденсатора по входу должны быть достаточно хорошего качества. Пенополистирол является более предпочтительным. Избегайте керамических конденсаторы, ведь некоторые из них могут иметь большие потери.

Два конденсатора по 10 мкФ в генераторе должен быть танталовые (у них низкое последовательное сопротивление ЭПС и индуктивность). Кварцевый резонатор на 4 МГц должен быть строго 4.000 МГц, а не что-то приближенное к этому значению. Каждый 1% ошибки в частоте кварца добавляет 2% ошибок при измерении значения индуктивности. Реле должно обеспечить около 30 мА тока срабатывания. Резистором R5 выставляется контраст ЖК дисплея LC метра. Питается прибор от обычной батарейки Крона, так как дальше напряжение стабилизируется микросхемой 7805.

Этот точный LC метр построен на базе недорогих компонентов, которые очень легко найти в радиомагазинах. Диапазон измерителя LC-метра достаточно широк и подходит для измерения даже очень низких значения емкости и индуктивности.

Печатная плата - рисунок

Индуктивности - диапазоны измерений:

  • 10nH - 1000nH
  • 1uH - 1000uH
  • 1mH - 100mH

Диапазоны измерения емкости:

  • 0.1pF - 1000pF
  • 1nF - 900nF

Большим плюсом устройства является автоматическая калибровка при включении питания, поэтому исключена ошибка в калибровке, что присуще некоторым аналогичным , особенно аналоговых. При необходимости, можно выполнить повторную калибровку в любой момент, нажатием кнопки reset. В обем данный LC метр полностью автоматический. Прошивку МК PIC16F628 .

Компоненты прибора

Слишком точные компоненты являются необязательными, за исключением одного (или более) конденсаторов, которые используются для калибровки измерителя. Два 1000 пФ конденсатора по входу должны быть достаточно хорошего качества. Пенополистирол является более предпочтительным. Избегайте керамических конденсаторы, ведь некоторые из них могут иметь большие потери.

Два конденсатора по 10 мкФ в генераторе должен быть танталовые (у них низкое последовательное сопротивление и индуктивность). Кварцевый резонатор на 4 МГц должен быть строго 4.000 МГц, а не что-то приближенное к этому значению. Каждый 1% ошибки в частоте кварца добавляет 2% ошибок при измерении значения индуктивности. Реле должно обеспечить около 30 мА тока срабатывания. Резистором R5 выставляется контраст ЖК дисплея LC метра. Питается прибор от обычной батарейки Крона, так как дальше напряжение стабилизируется микросхемой 7805 .

Сделал как то себе этот крайне полезный и не заменимый прибор, из-за острой необходимости в измерении емкости и индуктивности. Обладает на удивление очень хорошей точностью измерения при этом схема довольно простая базовым компонентом которой является микроконтроллер PIC16F628A.

Схема:

Как видно, основные компоненты схемы это PIC16F628A, знакосинтезирующий дисплей (можно использовать 3 типа дисплея 16х01 16х02 08х02), линейный стабилизатор LM7805, кварцевый резонатор на 4 Мгц, реле на 5В в DIP корпусе, двух секционный переключатель (для переключения режимов измерения L или C).

Прошивки для микроконтроллера:

Печатная плата:

Файл печатной платы в формате sprint layout:

Исходная плата разведена под реле в DIP корпусе.

У меня такого не нашлось и я использовал что было, старое компактное как раз подходящее по размерам реле. В качестве танталовых конденсаторов использовал совковые танталовые. Переключатель режима измерения, выключатель питания и кнопку калибровки использовал, снятые когда то со старых совковых осциллографов.

Провода измерительные:

Должны быть как можно короче.

Во время сборки и настройки руководствовался вот этой инструкцией:

Соберите плату, установите 7 перемычек. Установите в первую очередь перемычки под PIC и под реле и две перемычки рядом с контактами для дисплея.

Используйте танталовые конденсаторы (в генераторе) — 2 шт.
10мкф.
Два конденсатора 1000пФ должны быть полиэстеровые или лучше (прим. допуск не более 1%).

Рекомендуется использовать дисплей с подсветкой (прим. ограничительный резистор 50-100Ом на схеме не указан контакты 15, 16).
Установите плату в корпус. Соединение между плату и дисплей по вашему желанию можно припаять, или сделать используя разъем. Провода вокруг переключателя L/C сделайте как можно короткими и жесткими (прим. для уменьшения «наводок» и для правильной компенсации измерений особенно для заземленного конца L).

Кварц следует использовать 4.000MHz, нельзя использовать 4.1, 4.3 и т.п.

Проверка и калибровка:

  1. Проверьте установку деталей на плате.
  2. Проверьте установку всех перемычек на плате.
  3. Проверьте правильность установки PIC, диодов и 7805.
  4. Не забудьте – «прошить» PIC до установки в LC — метр.
  5. Осторожно включите питание. Если есть возможность, используйте регулируемый источник питания в первый раз. Измерять ток при увеличении напряжения. Ток должен быть не более 20мА. Образец потреблял ток 8мА. Если ничего не видно на дисплее покрутите переменный резистор регулировки контраста. На дисплее должно быть написано «Calibrating », затем C=0.0pF (или С= +/- 10пФ).
  6. Подождите несколько минут («warm-up»), затем нажмите кнопку «zero» (Reset) для повторной калибровки. На дисплее должно быть написано C=0.0pF.
  7. Подключите «калибровочный» конденсатор. На дисплее LC – метра увидите показания (с +/- 10% ошибкой).
  8. Для увеличения показаний емкости замкните перемычку «4» см. картинку ниже (прим. 7 ножка PIC). Для уменьшения показаний емкости, замкните перемычку «3» (прим. 6 ножка PIC) см. картинку ниже. Когда значение емкости будет совпадать с «калибровочным» удалите перемычку. PIC запомнит калибровку. Вы можете повторять калибровку множество раз (до 10,000,000).
  9. Если есть проблемы с измерениями, вы можете с помощью перемычек «1» и «2» проверить частоту генератора. Подсоедините перемычку «2» (прим. 8 ножка PIC) проверьте частоту «F1» генератора. Должно быть 00050000 +/- 10%. Если показания будут слишком большие (near 00065535), прибор выходит в режим «переполнение» и показывает ошибку «overflow» . Если показание слишком низкие (ниже 00040000), вы потеряете точность измерения. Подсоедините перемычку «1» (прим. 9 ножка PIC) для проверки калибровки частоты «F2». Должно быть около 71% +/- 5% от «F1» которые вы получили подсоединяя перемычку «2».
  10. Для получения максимально точных показаний можно регулировать L до получения F1 около 00060000. Предпочтительней устанавливать «L» = 82 мкГн на схеме 100мкГн (вы можете не купить 82мкГн;)).
  11. Если на дисплее 00000000 для F1 или F2, проверьте монтаж около переключателя L/C — это означает, что генератор не работает.
  12. Функция калибровки индуктивности автоматически калибруется, когда происходит калибровка емкости. (прим. калибровка происходят в момент срабатывания реле когда замыкаются L иC в приборе).

Тестовые перемычки

  1. Проверка F2
  2. Проверка F1
  3. Уменьшение C
  4. Увеличение C

Как проводить измерения:

Режим измерения емкости:

  1. Переводим переключатель выбора режима измерения в положение «C»
  2. Нажимаем кнопку «Zero»
  3. Появляется надпись «Setting! .tunngu.» ждем пока не появится «C = 0.00pF»

Режим измерения индуктивности:

  1. Включаем прибор, ждем пока загрузится
  2. Переводим переключатель выбора режима измерения в положение «L»
  3. Замыкаем измерительные провода
  4. Нажимаем кнопку «Zero»
  5. Появляется надпись «Setting! .tunngu.» ждем пока не появится «L = 0.00uH»

Ну вроде все, вопросы и замечания оставляйте в комментариях под статьей.

Эта статья продолжает тему расширения возможностей популярных мультиметров серии 83x. Малый потребляемый приставкой ток позволяет питать её от внутреннего стабилизатора АЦП мультиметра. С помощью этой приставки можно измерять индуктивность катушек и дросселей, ёмкость конденсаторов без выпаивания их из платы.

Конструкции измерительных приставок к мультиметрам помимо различия схемных решений и методов измерений того или иного параметра различны ещё и по способности работать от собственного источника питания и без него, используя стабилизатор напряжения АЦП мультиметра. Приставки, питаемые от стабилизатора АЦП мультиметра, по мнению автора, более удобны в эксплуатации, особенно "вне дома". В случае необходимости их можно питать и от внешнего источника напряжением 3 В, например, от двух гальванических элементов. Конечно, встаёт вопрос о потребляемом такой приставкой токе, который не должен превышать нескольких миллиампер, но применение современной элементной базы в сочетании с оптимальной схемотехникой решает эту задачу. Впрочем, вопрос о потребляемом токе всегда был и будет актуален, особенно для измерительных приборов c автономным питанием, когда продолжительность работы от автономного источника зачастую определяет выбор прибора.

При разработке LC-метра основное внимание было уделено не только минимизации потребляемого тока, но и возможности измерения индуктивности катушек и дросселей, ёмкости конденсаторов без выпаивания их из платы. Такую возможность следует всегда учитывать при разработке подобных измерительных приборов. Можно привести немало примеров, когда радиолюбители в своих конструкциях, к сожалению, не обращают на это внимания. Если, например, измерять ёмкость конденсатора методом зарядки стабильным током, то уже при напряжении на конденсаторе более 0,3...0,4 В без выпайки его из платы достоверно определить ёмкость зачастую невозможно.

Принцип работы LC-метра не нов , он основан на вычислении квадрата измеренного периода собственных колебаний в резонансном LC-контуре, который связан с параметрами его элементов соотношениями

Т = 2π √LC или LC = (Т/2π) 2 .

Из этой формулы следует, что измеряемая индуктивность линейно связана с квадратом периода колебаний при неизменной ёмкости в контуре. Очевидно, что той же линейной зависимостью связана и измеряемая ёмкость при неизменной индуктивности, и для измерений индуктивности или ёмкости достаточно преобразовать период колебаний в удобную величину. Из приведённой выше формулы видно, что при неизменной ёмкости 25330 пФ или индуктивности 25,33 мГн для мультиметров серии 83х минимальная дискретность измерения - 0,1 мкГн и 0,1 пФ в интервалах 0...200 мкГн и 0...200 пФ соответственно, а частота колебаний при измеряемой индуктивности 1 мкГн равна 1 МГц.

Приставка содержит измерительный генератор, частота которого определяется LC-контуром и в зависимости от рода измерений - индуктивностью, подключённой к входным гнёздам катушки, или ёмкостью конденсатора, узел стабилизации выходного напряжения генератора, формирователь импульсов, делители частоты для расширения интервалов измерений и преобразователь периода повторения импульсов в напряжение, пропорциональное его квадрату, которое измеряет мультиметр.

Основные технические характеристики

Пределы измерения индуктивности.........200 мкГн; 2 мГн; 20 мГн; 200 мГн; 2 Гн; 20 Гн

Пределы измерения ёмкости..................200 пФ; 2 нФ; 20 нФ; 0,2 мкФ; 2 мкФ; 20 мкФ

Погрешность измерения на первых четырёх пределах от 0,1 предельного значения и выше, не более, % .........3

Погрешность измерения на пределах 2 мкФ и 2 Гн, не более, % ......................10

Погрешность измерения на пределах 20 мкФ и 20 Гн, не более, % ...................20

Максимальный потребляемый ток, не более, мА...........3

Погрешность измерения индуктивности на пределах 2 и 20 Гн зависит от собственной ёмкости катушки, её активного сопротивления, остаточной намагниченности магнитопровода, а ёмкости на пределах 2 и 20 мкФ - от активного сопротивления катушки в LC-контуре и ЭПС (ESR) измеряемого конденсатора.

Схема приставки приведена на рис. 1. В положении "Lx" переключателя SA1 измеряют индуктивность катушки, подключённой к гнёздам XS1, XS2, параллельно которой подключён конденсатор С1, а в положении "Cx" - ёмкость конденсатора, параллельно которому подключена катушка индуктивности L1. На транзисторах VT1, VT2 собран измерительный генератор синусоидального напряжения, частота которого, как уже сказано выше, определяется элементами LC-контура. Это усилитель, охваченный положительной обратной связью (ПОС). Первая ступень усилителя собрана по схеме с общим коллектором (эмиттерный повторитель), она обладает большим входным сопротивлением и малым выходным, а вторая - по схеме с общей базой (ОБ) - обладает малым входным и большим выходным сопротивлением. Тем самым достигнуто хорошее согласование при замыкании выхода второй с входом первой. Обе ступени неинвертирующие, поэтому такое соединение охватывает усилитель стопроцентной ПОС, которая в сочетании с высоким входным сопротивлением эмиттерного повторителя и выходным каскада с ОБ обеспечивает работу генератора на резонансной частоте LC-контура в широком интервале частот.

Рассмотрим работу LC-метра с подключённой к гнёздам XS1, XS2 "Lx, Cx" катушкой индуктивности или конденсатором. Напряжение с выхода генератора поступает на усилитель с высоким входным сопротивлением, собранный на транзисторе VT3, который усиливает его в пять раз, что необходимо для нормальной работы узла стабилизации выходного напряжения генератора. Узел стабилизации собран на диодах VD1, VD2, конденсаторах С3, С5 и транзисторе VT4. Он поддерживает выходное напряжение генератора на неизменном уровне около 100 мВ эфф., при котором можно проводить измерения без выпаивания элементов из платы, а также повышает устойчивость колебаний генератора на этом уровне. Выходное напряжение усилителя, выпрямленное диодами VD1, VD2 и сглаженное конденсатором С5, поступает на базу транзистора VT4. При амплитуде напряжения на выходе генератора менее 150 мВ этот транзистор открыт базовым током, протекающим через резистор R7, и на генератор подаётся полное напряжение питания +3 В (такое напряжение необходимо подать на генератор для его надёжного запуска, а также при измерении индуктивности 1...3 мкГн). Если при измерении амплитуда напряжения генератора станет больше 150 мВ, на выходе выпрямителя появится напряжение закрывающей транзистор VT4 полярности. Его коллекторный ток уменьшится, что приведёт к уменьшению напряжения питания генератора и восстановлению амплитуды его выходного напряжения до заданного уровня. В противном случае происходит обратный процесс.

Выходное напряжение усилителя на транзисторе VT3 через цепь С4,С6,R8 поступает на формирователь импульсов, собранный на транзисторах VT5 и VT6 по схеме триггера Шмитта с эмиттерной связью. На его выходе формируются прямоугольные импульсы с частотой генератора, малым временем спада (около 50 нс) и размахом, равным напряжению питания. Такое время спада необходимо для нормальной работы десятичных счётчиков DD1-DD3. Резистор R8 обеспечивает устойчивую работу триггера Шмитта на низких частотах. Каждый из счётчиков DD1 - DD3 делит частоту сигнала на 10. Выходные сигналы счётчиков поступают на переключатель пределов измерений SA2.

С подвижного контакта переключателя в зависимости от выбранного предела измерения "х1", "х10 2 ", "х10 4 " импульсные сигналы прямоугольной формы U и (рис. 2,а) поступают на преобразователь "период-напряжение", собранный на ОУ DA1.1, полевых транзисторах VT7-VT9 и конденсаторе С8. С приходом очередного импульса сигнала длительностью 0,5Т транзистор VT7 на это время закрывается. Напряжение с резистивного делителя R13R14 (около 2,5 В) поступает на неинвертирующий вход ОУ DA 1.1. На этом ОУ и транзисторе VT9 собран источник стабильного тока (ИТ). Ток ИТ 140 мкА задан параллельным включением резисторов R16 и R17 при замкнутых контактах выключателя SA3 (положение "х1") и в десять раз меньше - 14 мкА - резистором R16 при разомкнутых (положение "х10").

В момент прихода импульса длительностью 0,5T транзистор VT8 через дифференцирующую цепь С7R15 открывается на 5...7 мкс, разряжая за это время конденсатор С8, после чего закрывается и начинается зарядка конденсатора С8 стабильным током от ИТ (рис. 2,б). По окончании импульса транзистор VT7 открывается, замыкая резистор R13, и ток ИТ становится равным нулю. В течение следующего интервала 0,5T напряжение U1 на конденсаторе С8 остаётся до прихода следующего импульса неизменным и равным

U 1 = U С8 = I ИТ1 хТ/(2хС8) = К 1 хТ,

где К 1 = I ИТ1 /(2хС8) - постоянный коэффициент.

Из этого выражения следует, что напряжение на заряженном конденсаторе С8 пропорционально периодуТ поступающих импульсов. При этом напряжению 2 В соответствует максимальное значение измеряемого параметра на каждом пределе измерения. К конденсатору подключён вход буферного усилителя на ОУ DA1.2 с единичным коэффициентом усиления, входной ток которого ничтожно мал (единицы пикоампер) и не влияет на разрядку (и зарядку) конденсатора С8.

С выхода буферного усилителя оно поступает на следующий преобразователь - "напряжение-ток" на ОУ DA2.1. На этом ОУ и резисторах R18-R21 собран ещё один ИТ (ИТ2). Ток этого ИТ определяется входным напряжением, поступающим на левый по схеме вывод резистора R18, и его сопротивлением, а знак - от того, какой из резисторов (в нашем случае это R18 или R20) включён входным. ИТ нагружен на конденсатор С9. Во время действия входного импульса длительностью 0,5Т транзистор VT10 открыт и напряжение U 2 на конденсаторе С9 равно нулю (рис. 2,в). По окончании импульса транзистор закрывается и начинается зарядка конденсатора постоянным током от напряжения, поступающего на резистор R18 с буферного усилителя на ОУ DA1.2. Как видно из диаграммы (рис. 2,в), напряжение на конденсаторе линейно возрастает в виде пилы до появления через время 0,5Т следующего импульса. К моменту его появления напряжение на конденсаторе достигнет значения

U 2max = U С9max = I ИТ2 хТ/(2хС9) = U C8 xT/(2xR18xС9) = K 2 xU C8 xT = К 1 хК 2 хТ 2 ,

где К 1 , К 2 - постоянные коэффициенты; К 2 = 1/(2xR18xC9).

Из этого выражения следует, что амплитуда напряжения на конденсаторе С9 пропорциональна квадрату периода поступающих импульсов, т. е. линейно зависит от измеряемой индуктивности или ёмкости. Такое преобразование "в квадрат периода" логически понятно и без приведённого выражения, поскольку напряжение на конденсаторе С9 зависит линейно одновременно как от периода, так и от напряжения на входе ИТ, также зависящего линейно от периода. При этом напряжению U2max, равному 2 В, соответствует максимальное значение измеряемого параметра на каждом пределе измерения.

К конденсатору С9 подключён вход буферного усилителя на ОУ DA2.2. С его выхода напряжение пилообразной формы, уменьшенное до необходимого уровня делителем R22R23, поступает на вход "VΩmA" мультиметра (разъём XP2). Встроенная интегрирующая RC-цепь мультиметра, подключённая к входу АЦП (постоянная времени 0,1 с), и внешняя - R22C12 сглаживают импульсы пилообразной формы до среднего за период значения, которое равно четверти амплитудного. Так, при амплитуде "пилы" на разъёме XP2 "VΩmA" 0,8 В напряжение на входе АЦП мультиметра равно 200 мВ, что соответствует верхней границе измерения постоянного напряжения на пределе 200 мВ.

Приставка собрана на плате из фольгированного с двух сторон стеклотекстолита. Чертёж печатной платы показан на рис. 3, а расположение на ней элементов - на рис. 4.

Фотографии печатной платы представлены на рис. 5, 6. Штырь ХР1 "NPNC" - подходящий от разъёма. Штыри ХР2 "VΩmA" и ХР3 "СОМ" - от вышедших из строя измерительных щупов для мультиметра. Входные гнёзда XS1, XS2 - клеммник винтовой 350-02-021-12 серии 350 фирмы DINKLE. Переключатели движковые: SA1 - SS12D07; SA2, SA3 - серии MSS, MS, IS, например, MSS-23D19 (MS-23D18) и MSS-22D18 (MS-22D16) соответственно. Катушка L1 - самодельная, содержит приблизительно (уточняется при налаживании) 160 витков провода ПЭВ-2 0,2, намотанных в четырёх секциях по 40 витков на кольцевом магнитопроводе типоразмера 10x6x4,5 из феррита 2000НМ1, 2000НМ3 или N48 (EPCOS). Ферриты этих марок имеют низкий температурный коэффициент магнитной проницаемости. Использование ферритов других марок, например N87, приведёт к увеличению погрешности измерения ёмкости при изменении температуры уже на 5...10 о С.

Конденсаторы С1, С8 и С9 - плёночные импортные выводные на напряжение 63 В (например, WIMA, EPCOS). Отклонение ёмкости конденсаторов С8, С9 должно быть не более 5 %. Остальные - для поверхностного монтажа: С2, С10, С11 - типоразмера 0805; С4, С6, С7 - 1206; оксидные С3, С5, С12 - тан-таловые В. Все резисторы типоразмера 1206. Резисторы R13, R14, R16-R21 следует применить с допуском не более 1 %, причём резисторы R18, R20 и R19, R21 отобрать мультиметром с как можно близкими сопротивлениями в каждой паре. Зачастую - для отбора достаточно ленточной упаковки из 10...20 резисторов ряда Е24 пятипроцентного класса точности.

Транзисторы VT1 -VT5 должны иметь коэффициент передачи тока не менее 500, VT6 - от 50 до 200. Транзисторы BSS84 заменимы на IRLML6302, а IRLML2402 - на FDV303N. При иной замене следует учесть, что пороговое напряжение транзисторов должно быть не более 2 В, сопротивление открытого канала - не более 0,5 Ом, а входная ёмкость - не более 200 пФ при напряжении сток-исток 1 В. Микромощные ОУ AD8542ARZ заменимы, например, МСР602 или отечественными КФ1446УД4А. Последние желательно отобрать по напряжению смещения нуля не более 2 мВ для уменьшения погрешности измерения, когда его результат не превышает 10 % от установленного предела. Десятичные счётчики 74HC4017D высокоскоростной логики допустимо заменить аналогичными из серии 4000В фирмы NXP (PHILIPS) - HEF4017В. Применять аналогичные счётчики других фирм, тем более отечественные К561ИЕ8, не следует. При напряжении питания 3 В входная частота 1 МГц с измерительного генератора для таких счётчиков слишком велика, а длительность спада импульса на их входе (50 нс) - мала. Они могут такой сигнал "не почувствовать".

Выводы конденсаторов С8, С9, идущие к общему проводу, пропаивают с двух сторон печатной платы. Аналогично пропаивают выводы переключателя SA3 и вывод, идущий от подвижного контакта SA2, а также вилки ХР1-ХР3. Причём XP2 и XP3 крепят пайкой в первую очередь, а затем уже "по месту" сверлят отверстие и впаивают вилку ХР1. В отверстия площадок около истока транзистора VT10 и резистора R14 вставляют отрезки лужёного провода и пропаивают их с двух сторон. Перед монтажом у микросхем DD2, DD3 вывод 4 следует отогнуть или удалить.

При работе с LC-метром переключатель рода работ мультиметра устанавливают в положение измерения постоянного напряжения на пределе "200mV". Пределы измерений LC-метра, соответствующие положениям переключателей SA2, SA3, приведены в таблице.

Калибровку LC-метра проводят в зависимости от наличия необходимых приборов и квалификации. В простейшем случае понадобятся катушка с точно известной индуктивностью, значение которой близко к соответствующему пределу измерения, и такой же конденсатор с измеренной ёмкостью. Для исключения погрешности от входной ёмкости LC-метра ёмкость конденсатора должна быть не менее 1800 пФ (например, 1800 пФ, 0,018 мкФ, 0,18 мкФ). Приставку сначала подключают к автономному источнику питания напряжением 3 В и измеряют потребляемый ток, который не должен превышать 3 мА, а затем подключают к мультиметру. Далее устанавливают переключатель SA1 в положение "Lx" и подключают к гнёздам XS1, XS2 "Lx, Cx" катушку с известной индуктивностью. Переключатели SA2 и SA3 устанавливают на соответствующий предел и добиваются показаний на индикаторе, численно равными индуктивности (запятую индикатора не учитывают), подключая при необходимости параллельно конденсатору С1 дополнительный ёмкостью до 3300 пФ. У конденсаторов С1, С8, С9 на печатной плате предусмотрены площадки для распайки дополнительных типоразмера 0805 для поверхностного монтажа. Возможна более точная корректировка показаний изменением в небольших пределах сопротивления резистора R22 или R23. Аналогично калибруют LC-метр при измерении ёмкости, но соответствующие показания на индикаторе устанавливают, изменяя число витков катушки L1.

Измеряя ёмкость приставкой, необходимо учитывать её входную ёмкость, которая в авторском образце равна 41,1 пФ. Это значение отображает индикатор мультиметра, если установить переключатель SA1 в положение "Сх", а SA2 и SA3 - в положение "x1". При изменении топологии печатной платы соединения выводов конденсаторов С8 и С9 с выводами транзисторов VT9 и VT10 должны быть выполнены отдельными проводниками.

Приставку можно использовать как генератор фиксированных частот синусоидальной и прямоугольной формы. Синусоидальный сигнал напряжением 0,1 В снимают с эмиттера транзистора VT3, прямоугольный амплитудой 3В - с подвижного контакта переключателя SA2. Нужные частоты получают, подключая к входу приставки конденсаторы соответствующей ёмкости в положении "Cx" переключателя SA1.

Чертёж печатной платы в формате Sprint Layout 5.0 можно скачать .

Литература

1. Универсальный LC-генератор. - Радио, 1979, № 5, с. 58.

2. L-метр с линейной шкалой. - Радио, 1984, № 5, с. 58, 61.


Дата публикации: 15.12.2014

Мнения читателей
  • camper / 19.05.2019 - 22:22
    Уже есть готовое решение http://www.ti.com/product/LDC1000
  • Сергей / 15.12.2016 - 01:16
    Roman, это не очень просто. С указанными транзисторами генератор тянет где-то до 2...3 МГц. Надо менять их, например, на КТ363, КТ3128 и уменьшить R2. Возможно придётся поднять питание до 5В. То же касается и VT3, VT5, VT6, т. е. ставить с малой ёмкостью к-э для снижения эффекта Миллера. Как вариант, для расширения полосы частот вместо VT3 - дифференциальный каскад. Уменьшить сопротивление R12. Если просто увеличить C1 в 10 раз, то генератор навряд ли возбудится из-за слишком низкой добротности LC-контура.
  • Roman / 13.10.2016 - 12:05
    Полностью присоединяюсь к комментарию Сергея Шибаева. Вопрос по поводу нижнего предела измерения индуктивности - я так понимаю минимум - 20мкГн. Можно ли сместить диапазон измерения вниз, до 0.2мкГн, в ущерб, скажем, верхнему пределу - ну не надо 20Гн мерять кому-то, и 2Гн тоже не надо... Ну или можно два изготовить, на разные диапазоны... Что для этого нужно? С уважением, Роман.
  • Сергей / 12.01.2015 - 16:52
    Спасибо тёзка за отзыв. В №1 за 2015 год тоже неплохой прибор будет представлен.
  • Сергей Шибаев / 18.12.2014 - 13:53
    Отличная разработка. Автору жму руку! С уважением Сергей Шибаев
Поделиться