Самодельная телевизионная антенна: для DVB и аналогового сигнала – теория, типы, изготовление. Антенный усилитель DVB-T2 (ДМВ) своими руками Из блока дмв усилитель вч сигнала

ГА Попов, г. Хмельницкий

Об антенных усилителях в розных журналах написано много. Но, несмотря на это, предлагаемый мною вариант антенного усилителя может представлять интерес.

При его реализации преследовалось две цели:

1) получить приемлемый коэффициент усиления для дальнейшего приема ДМВ;

2) сделать его незаметным для похитителей антенных усилителей, т.е. его размеры должны быть сведены до минимума, что позволяет поместить его вместе с кабелем снижения внутрь трубы-стойки крепления антенны.

Для миниатюризации использованы конденсаторы типа К10-17, резисторы типа ОМЛТ- 0,125, соответствующие транзисторы и печатный монтаж.

Принципиальная схема показана на рис.1 и особых пояснений не требует. Транзисторы VT1, VT2 типа 2Т3101А, 2Т31 ISA, 2T391A, 2Т3123А, 2Т3124А (т.е. с минимальным коэффициентом шума). Транзистор VT3 типа 2Т640, 2Т642, 2Т648 (буква особой роли не играет). Данные катушек индуктивности: L1 – 3 витка провода 0,6 мм (посеребренный

или луженый) на оправке 2,5 мм; L2 – 4 витка того же провода на оправке 1,8 мм; 13 – аналог L1.

Зависимость коэффициента усиления от частоты показана на рис.2. Коэффициент усиления для трехкаскадного усилителя около 35 дБ, коэффициент усиления для двухкаскадного усилителя 20 – 23 дБ.

Эскизное расположение деталей показано на рис.3. Собранный антенный усилитель помещают в собственный корпус. Удобнее всего для этого использовать трубку из меди или латуни соответствующего диаметра, которая затем вставляется внутрь трубы-стойки. Корпус-трубка должна быть луженой или выполнена из луженой жести. Усилитель тщательно герметизируют от попадания влаги путем аккуратной пайки корпуса, кабелей (или в дополнение к этому клеем БФ, эпоксидным клеем и т.п.).

Питание подается по тому же кабелю, что и снижение антенны. Режимы транзисторов при разных напряжениях питания сведены в таблицу.

Когда-то хорошая телевизионная антенна была дефицитом, покупные качеством и долговечностью, мягко говоря, не отличались. Сделать антенну для «ящика» или «гроба» (старого лампового телевизора) своими руками считалось показателем мастерства. Интерес к самодельным антеннам не угасает и в наши дни. Ничего странного тут нет: условия приема ТВ кардинально изменились, а производители, полагая, что в теории антенн ничего существенно нового нет и не будет, чаще всего приспосабливают к давно известным конструкциям электронику, не задумываясь над тем, что главное для любой антенны – ее взаимодействие с сигналом в эфире.

Что изменилось в эфире?

Во-первых, почти весь объем ТВ-вещания в настоящее время осуществляется в диапазоне ДМВ . Прежде всего из экономических соображений, в нем намного упрощается и удешевляется антенно-фидерное хозяйство передающих станций, и, что еще более важно – потребность в его регулярном обслуживании высококвалифицированными специалистами, занятыми тяжелым, вредным и опасным трудом.

Второе – ТВ-передатчики теперь покрывают своим сигналом практически все более-менее населенные места , а развитая сеть связи обеспечивает подачу программ в самые глухие углы. Там вещание в обитаемой зоне обеспечивают маломощные необслуживаемые передатчики.

Третье, изменились условия распространения радиоволн в городах . На ДМВ промышленные помехи просачиваются слабо, но железобетонные многоэтажки для них – хорошие зеркала, многократно переотражающие сигнал вплоть до его полного затухания в зоне, казалось бы, уверенного приема.

Четвертое – ТВ-программ в эфире сейчас очень много, десятки и сотни . Насколько это множество разнообразно и содержательно – другой вопрос, но рассчитывать на прием 1-2-3 каналов ныне бессмысленно.

Наконец, получило развитие цифровое вещание . Сигнал DVB T2 – штука особенная. Там, где он еще хоть чуть-чуть, на 1,5-2 дБ, превышает шумы, прием отличный, как ни в чем ни бывало. А чуть дальше или в стороне – нет, как отрезало. К помехам «цифра» почти не чувствительна, но при рассогласовании с кабелем или фазовых искажениях в любом месте тракта, от камеры до тюнера, картинка может рассыпаться в квадратики и при сильном чистом сигнале.

Требования к антеннам

В соответствии с новыми условиями приема, изменились и основные требования к ТВ-антеннам:

  • Такие ее параметры, как коэффициент направленного действия (КНД) и коэффициент защитного действия (КЗД) ныне определяющего значения не имеют: современный эфир очень грязный, и по малюсенькому боковому лепестку диаграммы направленности (ДН), хоть какая-то помеха, да пролезет, и бороться с ней нужно уже средствами электроники.
  • Взамен особое значение приобретает собственный коэффициент усиления антенны (КУ). Антенна, хорошо «облавливающая» эфир, а не смотрящая на него сквозь маленькую дырочку, даст запас мощности принятого сигнала, позволяющий электронике очистить его от шумов и помех.
  • Современная телевизионная антенна, за редчайшими исключениями, должна быть диапазонной, т.е. ее электрические параметры должны сохраняться естественным образом, на уровне теории, а не втискиваться в приемлемые рамки путем инженерных ухищрений.
  • ТВ-антенна должна согласовываться в кабелем во всем своем рабочем диапазоне частот без дополнительных устройств согласования и симметрирования (УСС).
  • Амплитудно-частотная характеристика антенны (АЧХ) должна быть возможно более гладкой. Резким выбросам и провалам непременно сопутствуют фазовые искажения.

Последние 3 пункта обусловлены требованиями приема цифровых сигналов. Настроенные, т.е. работающие теоретически на одной частоте, антенны можно «растянуть» по частоте, напр. антенны типа «волновой канал» на ДМВ с приемлемым отношением сигнал/шум захватывают 21-40 каналы. Но их согласование с фидером требует применения УСС, которые либо сильно поглощают сигнал (ферритовые), либо портят фазовую характеристику на краях диапазона (настроенные). И «цифру» такая антенна, отлично работающая на «аналоге», будет принимать плохо.

В связи с этим, из всего великого антенного многообразия, в данной статье будут рассмотрены антенны для телевизора, доступные для самостоятельного изготовления, следующих типов:

  1. Частотнонезависимая (всеволновая) – не отличается высокими параметрами, но очень проста и дешева, ее можно сделать буквально за час. За городом, где эфир почище, она вполне сможет принимать цифру или достаточно мощный аналог не небольшом удалении от телецентра.
  2. Диапазонная логопериодическая. Ее, образно выражаясь, можно уподобить рыболовецкому тралу, уже при облавливании сортирующему добычу. Она тоже довольно проста, идеально согласуется с фидером во всем своем диапазоне, абсолютно не меняет в нем параметры. Техпараметры – средние, поэтому более подойдет для дачи, а в городе в качестве комнатной.
  3. Несколько модификаций зигзагообразной антенны , или Z-антенны. В диапазоне МВ это весьма солидная конструкция, требующая немалого умения и времени. Но на ДМВ она вследствие принципа геометрического подобия (см. далее), настолько упрощается и съеживается, что вполне может быть использована как высокоэффективная комнатная антенна при почти любых условиях приема.

Примечание: Z-антенна, если использовать предыдущую аналогию – частый бредень, сгребающий все, что есть в воде. По мере замусоривания эфира она было вышла из употребления, но с развитием цифрового ТВ вновь оказалась на коне – во всем своем диапазоне она так же отлично согласована и держит параметры, как «логопедка».

Точное согласование и симметрирование почти всех описанных далее антенн достигается благодаря прокладке кабеля через т.наз. точку нулевого потенциала. К ней предъявляются особые требования, о которых подробнее будет сказано далее.

О вибраторных антеннах

В полосе частот одного аналогового канала можно передать до нескольких десятков цифровых. И, как уже сказано, цифра работает при ничтожном отношении сигнал/шум. Поэтому в очень удаленных от телецентра, куда сигнал одного-двух каналов еле добивает, местах, для приема цифрового ТВ может найти применение и старый добрый волновой канал (АВК, антенна волновой канал), из класса вибраторных антенн, так что в конце уделим несколько строк и ей.

О спутниковом приеме

Делать самому спутниковую антенну нет никакого смысла. Головку и тюнер все равно нужно покупать, а за внешней простотой зеркала кроется параболическая поверхность косого падения, которую с нужной точностью может выполнить далеко не всякое промышленное предприятие. Единственное, что под силу самодельщикам – настроить спутниковую антенну, об этом .

О параметрах антенн

Точное определение упомянутых выше параметров антенн требует знания высшей математики и электродинамики, но понимать их значение, приступая к изготовлению антенны, нужно. Поэтому дадим несколько грубые, но все же поясняющие смысл определения (см. рис. справа):

  • КУ – отношение принятой антенной на основной (главный) лепесток ее ДН мощности сигнала, к его же мощности, принятой в том же месте и на той же частоте ненаправленной, с круговой, ДН, антенной.
  • КНД – отношение телесного угла всей сферы к телесному углу раскрыва главного лепестка ДН, в предположении, что его сечение – круг. Если главный лепесток имеет разные размеры в разных плоскостях, сравнивать нужно площадь сферы и площадь сечения ею главного лепестка.
  • КЗД – отношение принятой на главный лепесток мощности сигнала к сумме мощностей помех на той же частоте, принятой всеми побочными (задним и боковыми) лепестками.

Примечания:

  1. Если антенна диапазонная, мощности считаются на частоте полезного сигнала.
  2. Поскольку совершенно ненаправленных антенн не бывает, за такую принимают полуволновой линейный диполь, ориентированный по направлению электрического вектора поля (по его поляризации). Его КУ считается равным 1. ТВ программы передаются с горизонтальной поляризацией.

Следует помнить, что КУ и КНД не обязательно взаимосвязаны. Есть антенны (напр. «шпионская» – однопроводная антенна бегущей волны, АБВ) с высокой направленностью, но единичным или меньшим усилением. Такие смотрят вдаль как бы сквозь диоптрический прицел. С другой стороны, существуют антенны, напр. Z-антенна, у которых невысокая направленность сочетается со значительным усилением.

О тонкостях изготовления

Все элементы антенн, по которым протекают токи полезного сигнала (конкретно – в описаниях отдельных антенн), должны соединяться между собой пайкой или сваркой. В любом сборном узле на открытом воздухе электрический контакт скоро нарушится, и параметры антенны резко ухудшатся, вплоть до полной ее негодности.

Особенно это касается точек нулевого потенциала. В них, как говорят специалисты, наблюдается узел напряжения и пучность тока, т.е. его наибольшее значение. Ток при нулевом напряжении? Ничего удивительного. Электродинамика ушла от закона Ома на постоянном токе так же далеко, как Т-50 от воздушного змея.

Места с точками нулевого потенциала для цифровых антенн лучше всего выполнять гнутыми из цельного металла. Небольшой «ползучий» ток на сварке при приеме аналога на картинке, скорее всего, не скажется. Но, если принимается цифра на границе шумов, то тюнер из-за «ползучки» может не увидеть сигнала. Который при чистом токе в пучности дал бы стабильный прием.

О пайке кабеля

Оплетка (да и центральная жила нередко) современных коаксиальных кабелей делаются не из меди, а из стойких к коррозии и недорогих сплавов. Паяются они плохо и, если долго греть, можно пережечь кабель. Поэтому паять кабели нужно 40-Вт паяльником, легкоплавким припоем и с флюс-пастой вместо канифоли или спиртоканифоли. Пасты жалеть не нужно, припой сразу же растекается по жилкам оплетки только под слоем кипящего флюса.

Виды антенн

Всеволновая

Всеволновая (точнее, частотнонезависимая, ЧНА) антенна показана на рис. Она – две треугольных металлических пластинки, две деревянных рейки, да много медных эмалированных проволок. Диаметр проволоки значения не имеет, а расстояние между концами проволок на рейках – 20-30 мм. Зазор между пластинами, к которым припаяны другие концы проволок – 10 мм.

Примечание: вместо двух металлических пластин лучше взять квадрат из одностороннего фольгированного стеклотекстолита в вырезанными по меди треугольниками.

Ширина антенны равна ее высоте, угол раскрыва полотен – 90 градусов. Схема прокладки кабеля показана там же на рис. Точка, отмеченная желтым – точка квази-нулевого потенциала. Припаивать в ней оплетку кабеля к полотну не нужно, достаточно туго подвязать, для согласования хватит емкости между оплеткой и полотном.

ЧНА, растянутая в окне шириной 1,5 м, принимает все метровые и ДЦМ каналы почти со всех направлений, кроме провала около 15 градусов в плоскости полотна. В этом ее преимущество в местах, где возможен прием сигналов от разных телецентров, не нужно вращать. Недостатки – единичный КУ и нулевой КЗД, поэтому в зоне действия помех и вне зоны уверенного приема ЧНА не годится.

Примечание : есть и другие типы ЧНА, напр. в виде двухвитковой логарифимической спирали. Она компактнее ЧНА из треугольных полотен в том же диапазоне частот, поэтому иногда используется в технике. Но в быту это преимуществ не дает, сделать спиральную ЧНА сложнее, с коаксиальным кабелем согласовать труднее, поэтому не рассматриваем.

На основе ЧНА был создан очень популярный когда-то веерный вибратор (рога, рогулька, рогатка), см. рис. Его КНД и КЗД что-то около 1,4 при довольно гладкой АЧХ и линейной ФЧХ, так что для цифры он подошел бы и сейчас. Но – работает только на МВ (1-12 каналы), а цифровое вещание идет на ДМВ. Впрочем, на селе, при подъеме на 10-12 м, может сгодиться для приема аналога. Мачта 2 может быть из любого материала, но крепежные планки 1 – из хорошего ненамокающего диэлектрика: стеклотекстолита или фторопласта толщиной не менее 10 мм.

Пивная всеволновка

Всеволновая антенна из пивных банок явно не плод похмельных галлюцинаций спившегося радиолюбителя. Это действительно очень хорошая антенна на все случаи приема, нужно только сделать ее правильно. Причем исключительно простая.

В основе ее конструкции следующее явление: если увеличивать диаметр плеч обычного линейного вибратора, то рабочая полоса его частот расширяется, а прочие параметры остаются неизменными. В дальней радиосвязи с 20-х годов используется т.наз. диполь Надененко, основанный на этом принципе. А пивные банки по размерам как раз подходят в качестве плеч вибратора на ДМВ. В сущности, ЧНА и есть диполь, плечи которого неограниченно расширяются до бесконечности.

Простейший пивной вибратор из двух банок годится для комнатного приема аналога в городе даже без согласования с кабелем, если его длина не более 2 м, слева на рис. А если собрать из пивных диполей вертикальную синфазную решетку с шагом в полволны (справа на рис.), согласовать ее и отсимметрировать с помощью усилителя от польской антенны (о нем речь еще пойдет), то благодаря сжатию главного лепестка ДН по вертикали такая антенна даст и хороший КУ.

Усиление «пивнухи» можно еще увеличить, добавив заодно КЗД, если сзади нее поместить экран из сетки на расстоянии, равном половине шага решетки. Монтируется пивная решетка на мачте из диэлектрика; механические связи экрана с мачтой – тоже диэлектрические. Остальное ясно из след. рис.

Примечание: оптимальное количество этажей решетки – 3-4. При 2-х выигрыш в усилении будет небольшим, а большее трудно согласовать с кабелем.

Видео: изготовление простейшей антенны из пивных банок

«Логопедка»

Логопериодическая антенна (ЛПА) представляет собой собирающую линию, к которой попеременно подключаются половинки линейных диполей (т.е. куски проводника длиной в четверть рабочей волны), длина и расстояние между которыми меняются в геометрической прогрессии с показателем меньше 1, в центре на рис. Линия может быть как настроенной (с КЗ на противоположном от места подключения кабеля конце), так и свободной. ЛПА на свободной (ненастроенной) линии для приема цифры предпочтительнее: она выходит длиннее, но ее АЧХ и ФЧХ гладкие, а согласование с кабелем не зависит от частоты, поэтому на ней мы и остановимся.

ЛПА может быть изготовлена на любой, до 1-2 ГГц, наперед заданный диапазон частот. При изменении рабочей частоты ее активная область из 1-5 диполей смещается вперед-назад по полотну. Поэтому, чем ближе показатель прогрессии к 1, и соответственно меньше угол раскрыва антенны, тем большее усиление она даст, но при этом возрастает ее длина. На ДМВ от наружной ЛПА можно добиться 26 дБ, а от комнатной – 12 дБ.

ЛПА, можно сказать, по совокупности качеств идеальная цифровая антенна , поэтому остановимся на ее расчете несколько подробнее. Основное, что нужно знать, что увеличение показателя прогрессии (тау на рис.) дает прирост усиления, а уменьшение угла раскрыва ЛПА (альфа) увеличивает направленность. Экран для ЛПА не нужен, он на ее параметры почти не влияет.

Расчет цифровой ЛПА имеет особенности:

  1. Начинают его, ради запаса по частоте, со второго по длине вибратора.
  2. Затем, взяв обратную величину от показателя прогрессии, рассчитывают самый длинный диполь.
  3. После самого короткого, исходя из заданного диапазона частот, диполя, добавляют еще один.

Поясним на примере. Допустим, наши цифровые программы лежат в диапазоне 21-31 ТВК, т.е. в 470-558 МГц по частоте; длины волн соответственно – 638-537 мм. Также допустим, что нам нужно принимать слабый зашумленный сигнал вдали от станции, поэтому берем максимальный (0,9) показатель прогрессии и минимальный (30 градусов) угол раскрыва. Для расчета понадобится половина угла раскрыва, т.е. 15 градусов в нашем случае. Раскрыв можно еще уменьшить, но длина антенны непомерно, по котангенсу, возрастет.

Считаем В2 на рис: 638/2 = 319 мм, а плечи диполя будут по 160 мм, до 1 мм можно округлять. Расчет нужно будет вести, пока не получится Bn = 537/2 = 269 мм, и затем просчитать еще один диполь.

Теперь считаем А2 как В2/tg15 = 319/0,26795 = 1190 мм. Затем, через показатель прогрессии, А1 и В1: А1 = А2/0,9 = 1322 мм; В1 = 319/0,9 = 354,5 = 355 мм. Далее последовательно, начиная с В2 и А2, умножаем на показатель, пока не дойдем до 269 мм:

  • В3 = В2*0,9 = 287 мм; А3 = А2*0,9 = 1071 мм.
  • В4 = 258 мм; А4 = 964 мм.

Стоп, у нас уже меньше 269 мм. Проверяем, уложимся ли по усилению, хотя и так ясно, что нет: чтобы получить 12 дБ и более, расстояния между диполями не должны превышать 0,1-0,12 длины волны. В данном случае имеем для В1 А1-А2 = 1322 – 1190 = 132 мм, а это 132/638 = 0,21 длины волны В1. Нужно «подтянуть» показатель к 1, до 0,93-0,97, вот и пробуем разные, пока первая разница А1-А2 не сократится вдвое и более. Для максимума в 26 дБ нужно расстояние между диполями в 0,03-0,05 длины волны, но не менее 2-х диаметров диполя, 3-10 мм на ДМВ.

Примечание: остаток линии за самым коротким диполем, обрезаем, он нужен только для расчета. Поэтому реальная длина готовой антенны получится всего около 400 мм. Если наша ЛПА наружная, это очень хорошо: можно уменьшить раскрыв, получив большую направленность и защиту от помех.

Видео: антенна для цифрового ТВ DVB T2

О линии и мачте

Диаметр трубок линии ЛПА на ДМВ – 8-15 мм; расстояние между их осями – 3-4 диаметра. Учтем еще, что тонкие кабели-«шнурки» дают на ДМВ такое затухание на метр, что все антенно-усилительные ухищрения сойдут на нет. Коаксиал для наружной антенны нужно брать хороший, диаметром по оболочке от 6-8 мм. Т.е., трубки для линии должны быть тонкостенными цельнотянутыми. Подвязывать кабель к линии снаружи нельзя, качество ЛПА резко упадет.

Крепить наружную ЛПА к мачте нужно, разумеется, за центр тяжести, иначе малая парусность ЛПА превратится в огромную и трясущуюся. Но соединять металлическую мачту прямо с линией тоже нельзя: нужно предусмотреть диэлектрическую вставку не менее 1,5 м длиной. Качество диэлектрика большой роли тут не играет, пойдет проолифленное и покрашенное дерево.

Об антенне «Дельта»

Если ДМВ ЛПА согласуется с кабелем усилителем (см. далее, о польских антеннах), то к линии можно пристроить плечи метрового диполя, линейные или веерные, как у «рогатки». Тогда получим универсальную МВ-ДМВ антенну отличного качества. Такое решение использовано в популярной антенне «Дельта», см. рис.

Антенна “Дельта”

Зигзаг в эфире

Z-антенна с рефлектором дает усиление и КЗД такие же, как ЛПА, но главный лепесток ее ДН более чем вдвое шире по горизонтали. Это может быть важно на селе, когда есть прием ТВ с разных направлений. А дециметровая Z-антенна имеет небольшие в плане размеры, что существенно для комнатного приема. Но ее рабочий диапазон теоретически не безграничен, перекрытие по частоте при сохранении приемлемых для цифры параметров – до 2,7.

Конструкция Z-антенны МВ показана на рис; красным выделен путь прокладки кабеля. Там же слева внизу – более компактный кольцевой вариант, в просторечии – «паук». По нему хорошо видно, что Z-антенна родилась как комбинация ЧНА с диапазонным вибратором; есть в ней кое-что и от ромбической антенны, которая в тему не вписывается. Да, кольцо «паука» не обязательно должно быть деревянным, это может быть обруч из металла. «Паук» принимает 1-12 МВ каналы; ДН без рефлектора – почти круговая.

Классический же зигзаг работает или на 1-5, или на 6-12 каналах, но для его изготовления нужны только деревянные рейки, медный эмалированный провод c d = 0,6-1,2 мм да несколько обрезков фольгированного стеклотекстолита, поэтому даем размеры, через дробь для 1-5/6-12 каналов: А = 3400/950 мм, Б, С = 1700/450 мм, b = 100/28 мм, В = 300/100 мм. В точке Е – нулевой потенциал, здесь нужно оплетку спаять с металлизированной опорной пластиной. Размеры рефлектора, тоже 1-5/6-12: А = 620/175 мм, Б = 300/130 мм, Г = 3200/900 мм.

Диапазонная Z-антенна с рефлектором дает усиление в 12 дБ, настроенная на один канал – 26 дБ. Чтобы на основе диапазонного зигзага построить одноканальный, нужно взять сторону квадрата полотна по середине ее ширины в четверть длины волны и пересчитать пропорционально все прочие размеры.

Народный зигзаг

Как видим, Z-антенна МВ – довольно сложное сооружение. Но ее принцип показывает себя во всем блеске на ДМВ. Z-антенну ДМВ с емкостными вставками, сочетающая в себе достоинства «классики» и «паука», сделать настолько просто, что она еще в СССР заслужила звание народной, см. рис.

Материал – медная трубка или алюминиевый лист толщиной от 6 мм. Боковые квадратики цельные из металла или затянутые сеткой, или закрытые жестянкой. В двух последних случаях их нужно пропаять по контуру. Коаксиал резко гнуть нельзя, поэтому ведем его так, чтобы он дошел до бокового угла, а затем не выходил за пределы емкостной вставки (бокового квадратика). В т. А (точка нулевого потенциала) оплетку кабеля электрически соединяем с полотном.

Примечание: алюминий не паяется обычными припоями и флюсами, поэтому алюминиевая «народная» годится для наружной установки только после герметизации электрических соединений силиконом, в ней ведь все на винтах.

Видео: пример двойной треугольной антенны

Волновой канал

Антенна волновой канал (АВК), или антенна Удо-Яги из доступных для самостоятельного изготовления способна дать наибольшие КУ, КНД и КЗД. Но принимать цифру на ДМВ она может только на 1 или 2-3 соседних каналах, т.к. относится к классу остро настроенных антенн. Ее параметры за пределами частоты настройки резко ухудшаются. АВК рекомендуется применять с очень плохих условиях приема, причем для каждого ТВК делать отдельную. К счастью, это не очень сложно – АВК проста и дешева.

В основе работы АВК – «сгребание» электромагнитного поля (ЭМП) сигнала к активному вибратору. Внешне небольшая, легкая, с минимальной парусностью, АВК может иметь эффективную апертуру в десятки длин волн рабочей частоты. Укороченные и поэтому имеющие емкостный импеданс (полное сопротивление) директоры (направители) направляют ЭМП к активному вибратору, а рефлектор (отражатель), удлиненный, с индуктивным импедансом, отбрасывает к нему то, что проскочило мимо. Рефлектор в АВК нужен всего 1, но директоров может быть от 1 до 20 и более. Чем их больше, тем выше усиление АВК, но уже полоса ее частот.

От взаимодействия с рефлектором и директорами волновое сопротивление активного (с которого снимается сигнал) вибратора падает тем больше, чем ближе к максимуму усиления настроена антенна, и согласование с кабелем теряется. Поэтому активный диполь АВК делают петлевым, его исходное волновое сопротивление не 73 Ом, как у линейного, а 300 Ом. Ценой его снижения до 75 Ом АВК с тремя директорами (пятиэлементную, см. рис. справа) удается настроить почти что на максимум усиления в 26 дБ. Характерная для АВК ДН в горизонтальной плоскости приведена на рис. в начале статьи.

Элементы АВК соединяются со стрелой в точках нулевого потенциала, поэтому мачта и стрела могут быть любыми. Очень хорошо подходят пропиленовые трубы.

Расчет и настройка АВК под аналог и цифру несколько различны. Под аналог волновой канал нужно рассчитывать на несущую частоту изображения Fи, а под цифру – на середину спектра ТВК Fс. Почему так – здесь объяснять, к сожалению, нет места. Для 21-го ТВК Fи = 471,25 МГц; Fс = 474 МГц. ДМВ ТВК расположены вплотную друг к другу через 8 МГц, поэтому их настроечные частоты для АВК рассчитываются просто: Fn = Fи/Fс(21 ТВК) + 8(N – 21), где N – номер нужного канала. Напр. для 39 ТВК Fи = 615,25 МГц, а Fс = 610 МГц.

Чтобы не записывать множество цифр, удобно размеры АВК выражать в долях длины рабочей волны (она считается как Л = 300/F, МГц). Длину волны принято обозначать малой греческой буквой лямбда, но, поскольку в интернете греческого алфавита по умолчанию нет, мы условно обозначим ее большой русской Л.

Размеры оптимизированной под цифру АВК, по рис., таковы:

  • Р = 0,52Л.
  • В = 0,49Л.
  • Д1 = 0,46Л.
  • Д2 = 0,44Л.
  • Д3 = 0,43л.
  • a = 0,18Л.
  • b = 0,12Л.
  • c = d = 0,1Л.

Если не нужно большого усиления, но важнее уменьшение габаритов АВК, то Д2 и Д3 можно убрать. Все вибраторы выполняются из трубки или прутка диаметром 30-40 мм для 1-5 ТВК, 16-20 мм для 6-12 ТВК и 10-12 мм на ДМВ.

АВК требует точного согласования с кабелем. Именно небрежным выполнением устройства согласования и симметрирования (УСС) объясняется большинство неудач любителей. Самое простое УСС для АВК – U-петля из того же коаксиального кабеля. Ее конструкция ясна из рис. справа. Расстояние между сигнальными клеммами 1-1 140 мм для 1-5 ТВК, 90 мм для 6-12 ТВК и 60 мм на ДМВ.

Теоретически длина колена l должна быть в половину длины рабочей волны, так и значится в большинстве публикаций в интернете. Но ЭМП в U-петле сосредоточено внутри заполненного изоляцией кабеля, поэтому нужно обязательно (для цифры – особенно обязательно) учитывать его коэффициент укорочения. Для 75-омных коаксиалов он колеблется в пределах 1,41-1,51, т.е. l нужно брать от 0,355 до 0,330 длины волны, и брать точно, чтобы АВК была АВК, а не набором железок. Точное значение коэффициента укорочения всегда есть в сертификате на кабель.

В последнее время отечественная промышленность начала выпускать перенастраиваемые АВК для цифры, см. рис. Идея, надо сказать, отличная: передвигая элементы по стреле, можно точно настроить антенну под местные условия приема. Лучше, конечно, чтобы это делал специалист – поэлементная настройка АВК взаимозависима, и дилетант непременно запутается.

О «полячках» и усилителях

У многих пользователей польские антенны, ранее прилично принимавшие аналог, цифру брать отказываются – рвется, а то и вовсе пропадает. Причина, прошу прощения, похабно-коммерческий подход к электродинамике. Стыдно порой бывает за коллег, сляпавших такое «чудо»: АЧХ и ФЧХ похожи то ли на ежа-псориазника, то ли лошадиный гребень с выломанными зубьями.

Единственно, что хорошо в «полячках» – их усилители для антенны. Собственно, они и не дают сим изделиям бесславно помереть. Усилители «поячек», во-первых, широкополосные малошумящие. И, что еще важнее – с высокоомным входом. Это позволяет при той же напряженности ЭМП сигнала в эфире подать на вход тюнера в несколько раз большую его мощность, что дает возможность электронике «выдрать» цифру из совсем уж безобразных шумов. Кроме того, вследствие большого входного сопротивления польский усилитель – идеальное УСС для любых антенн: что ни цепляй ко входу, на выходе – точно 75 Ом без отраженки и ползучки.

Однако при очень плохом сигнале, вне зоны уверенного приема, польский усилитель уже не тянет. Питание на него подается по кабелю, и развязка по питанию отнимает 2-3 дБ отношения сигнал/шум, которых может как раз и не хватить, чтобы цифра пошла в самой глубинке. Тут нужен хороший усилитель ТВ сигнала с раздельным питанием. Располагаться он будет, скорее всего, возле тюнера, а УСС для антенны, если оно требуется, придется делать отдельно.

Схема такого усилителя, показавшая почти 100% повторяемость даже при выполнении начинающими радиолюбителями, приведена на рис. Регулировка усиления – потенциометром Р1. Дроссели развязки L3 и L4 – стандартные покупные. Катушки L1 и L2 выполняются по размерам на монтажной схеме справа. Они входят в состав полосовых фильтров сигнала, поэтому небольшие отклонения их индуктивности не критичны.

Однако топологию (конфигурацию) монтажа нужно соблюдать точно! И точно также обязателен металлический экран (metal shield), отделяющий выходные цепи от прочей схемы.

С чего начать?

Мы надеемся, что и опытные мастера найдут в этой статье некоторое количество полезных им сведений. А новичкам, еще не чувствующим эфир, начинать лучше всего с пивной антенны. Автор статьи, отнюдь и отнюдь не дилетант в данной области, в свое время был немало удивлен: простейшая «пивнушка» с ферритовым согласованием, как оказалось, и МВ берет не хуже испытанной «рогатки». А что стоит сделать ту и другую – см. текст.

(2 оценок, среднее: 4,00 из 5)

Сказал(а):

А на крыше был приём удовлетворительный на Полячку. До телецентра у меня километров 70 – 80. Вот такие у меня проблемы. С балкона удаётся поймать с 30 каналов штук 3 – 4 и то с “кубиками”. Я иной раз смотрю телеканалы с интернета на компьютере в своей комнате, а жена в своей на телевизор не может нормально смотреть свои любимые каналы. Соседи советуют провести кабельное, но за него надо платить каждый месяц, а я уже и так плачу за интернет, а пенсия не резиновая. Всё её тянем, тянем и на всё не хватает.

Пётр Копитоненко сказал(а):

Поставить антенну на крыше дома не получается, соседи ругаются, что я хожу и ломаю рубероидное покрытие крыши и у них потом протекает потолок. Вообще то я очень “благодарен” тому экономисту, который получил себе премию за экономию.Придумал убрать с домов дорогостоящую двускатную крышу и заменить её плоской крышей прикрытой плохим рубероидом. Экономист получил денежки за экономию, а люди на последних этажах теперь всю жизнь мучаются. Вода течёт им на головы и на кровати. Они каждый год меняют рубероид, а он за сезон приходит в негодность. В морозную погоду он даёт трещины и дождевая вода и снеговая течёт в квартиру, даже если по крыше никто и не ходит!!!

Сергей сказал(а):

Приветствую!
Спасибо за статью, а автор-то кто (подписи не вижу)?
ЛПА по приведённой выше методике работает отлично, ДМВ 30 и 58 каналы. Проверено в городе (отражённый сигнал) и за городом, расстояния до передатчика (1 кВт) соответственно: 2 и 12 км примерно. Практика показала, что в диполе “В1” острой необходимости нет, а вот ещё один диполь перед самым коротким сказывается существенно, судя по интенсивности сигнала в %. Особенно в условиях города, где надо ловить (в моём случае) отражённый сигнал. только я сделал антенну с “КЗ”, так получилось, просто не оказалось подходящего изолятора.
В общем, рекомендую.

Василий сказал(а):

ИМХО: народ ищущий антенну для приема ЭЦТВ, забудьте про ЛПА. Эти широкодиапазонные антенны были созданы во второй половине 50-х годов (!!) прошлого века для того, чтобы находясь на берегах советской Прибалтики ловить забугорные телецентры. В журналах того времени это стыдливо называли «сверхдальним приемом». Ну очень любили на Рижском взморье ночью смотреть шведское порно…

В плане назначения тоже самое могу сказать про «двойные, тройные и т.д. квадраты», а также любые «зигзаги».

По сравнению с аналогичным по диапазону и усилению «волновым каналом» ЛПА более громоздки и материалоемки. Расчет ЛПА сложен, замысловат и похож скорее на гадание и подгонку результатов.

Если в вашем регионе ведется вещание ЭЦТВ на соседних ДМВ каналах (у меня 37-38) то лучшее решение разыскать в сети книгу: Капчинский Л.М. Телевизионные антенны (2-е издание, 1979) и изготовить «волновой канал» для группы каналов ДМВ (если у Вас вещание выше 21-41 каналов, то придется пересчитывать) описанный на стр 67 и далее (рис. 39, табл 11).
Если до передатчика 15 – 30км антенну можно упростить, сделав ее четырех – пять элементной, просто не устанавливая директоры Д, Е и Ж.

Для совсем близких передатчиков рекомендую комнатные антенны, кстати в той же книге на стр. 106 – 109 приведены чертежи широкодиапазонных комнатных «волнового канала» и ЛПА. «Волновой канал» визуально меньше, проще и изящней при большем усилении!

Нажимая кнопку «Добавить комментарий», я соглашаюсь с сайта.

Дальний прием телевидения в диапазоне ДМВ

Телевизионное вещание на дециметровых волнах (ДМВ) получило широкое распространение, как за рубежом, так и в нашей стране. Диапазон ДМВ (470-1270 МГц) охватывает 80 телевизионных каналов (с 21 по 100) и имеет низкий уровень шумов и помех, что позволяет вести в нем многопрограммное высококачественное вещание. Телеприем ДМВ имеет ряд особенностей:

1. ДМВ практически не огибает земную поверхность и обладают низкой проникающей способностью, поэтому зона уверенного приема ограничивается прямой видимостью между передающей и приемной антеннами.

2. В то же время ДМВ хорошо отражаются от земной поверхности и от ионизированных слоев атмосферы. Это делает возможным прием на значительном (300-500 км) удалении от телецентра. При этом прохождение ДМВ достаточно стабильно и не имеет замираний свойственных метровым волнам (MB).

3. Характерной особенностью ДМВ является так называемое волновое распространение, при котором сигнал может быть принят на расстоянии до нескольких тыс. км от телецентра. Оно имеет место над морской поверхностью в ясные дни весенних и летних месяцев.

4. Приемные антенны ДМВ имеют значительно меньше чем антенны MB геометрические размеры. При этом мала их эффективная площадь, а следовательно, и мощность сигнала, подаваемого на вход телеприемника.

5. Чувствительность телеприемников в диапазоне ДМВ значительно ниже, чем в диапазоне MB, что связано с плохими шумовыми параметрами селектора ДМВ. Анализ перечисленных особенностей показывает принципиальную возможность дальнего и сверхдальнего приема телевидения в диапазоне ДМВ и два основных пути его реализации. Это - повышение эффективности антенной системы и реальной (ограниченной шумами) чувствительности телеприемника.

Возможности повышения коэффициента усиления антенн ДМВ на практике ограничены сложностью их конструкции и согласования с фидером.

Увеличение чувствительности телеприемника требует переделки селектора ДМВ и обычно не дает желаемых результатов. Дело в том, что в диапазоне ДМВ велико затухание сигнала в кабеле, и при использовании антенн с малым усилением не удается получить на входе телеприемника существенного выигрыша в соотношении сигнал-шум.

Наиболее оптимальным путем является использование конструктивно простой антенны с усилителем, расположенным в непосредственной близости от неё. В этом случае возможно одновременное повышение и эффективности антенны и чувствительности телеприемника без его переделки.

Антенный усилитель должен иметь большой коэффициент усиления, малый коэффициент шума, широкий диапазон рабочих температур. При этом он должен быть несложен по конструкции, собран из доступных деталей, прост в настройке и несклонен к самовозбуждению.

В результате многолетних теоретических и экспериментальных исследований нам удалось создать оптимальную по перечисленным требованиям схему и конструкцию усилителя ДМВ, не имеющего промышленных и любительских аналогов.

Г. БОРИЙЧУК, В. БУЛЫЧ, В. ШЕЛОНИН, г. С-Петербург

1. Антенный усилитель диапазона ДМВ

1.1. Параметры и схема усилителя

Усилитель обладает следующими параметрами:

Коэффициент усиления Ку и коэффициент шума Fш в диапазоне
470-630 МГц (21-40 каналы) - Ку ≥ 30 дБ, Fш ≤ 2,0 дБ;
630-790 МГц (41-60 каналы) - Ку ≥ 25 дБ, Fш ≤ 2,5 дБ;
790-1270 МГц (61-100 каналы) - Ку ≥ 15 дБ, Fш ≤ 3,5 дБ.

Входное и выходное сопротивление - 75 Ом
- напряжение питание - 9-12 В
- диапазон рабочих температур - (-30...+40) °С.

Схема усилителя приведена на рис. 1. Он содержит два каскада на транзисторах VT1 и VT2, включенных по схеме с общим эмиттером. Для получения максимального усиления эмиттеры транзисторов соединены непосредственно с общим проводом. Нагрузками каскадов являются широкополосные контуры L2, R2, L3, С4 и L4, R6, L5, С10, обеспечивающие согласование их входных и выходных сопротивлений. Контур L1, С1 является фильтром верхних частот (частота среза 400 МГц), служащим для устранения помех от телепередатчиков MB диапазона. Конденсаторы СЗ, С5, С7, С8 - блокировочные. Питание усилителя осуществляется по коаксиальному кабелю, соединяющему его с телевизором, через фильтр нижних частот L6, R8, С11. Непосредственно перед телевизором сигнал ДМВ и напряжение питания разделяются фильтром С12, L7, С13.

Рис. 1. Схема электрическая принципиальная антенного усилителя и раздельного фильтра питания

Режимы транзисторов по постоянному току задаются резисторами R1 и R5 так, чтобы получить оптимальные значения коллекторных токов I1 и I2 транзисторов VT1 и VT2. Ток I1 выбирается из условия получения минимального коэффициента шума первого каскада, а I2 - из условия получения максимального усиления второго каскада.

Детали и конструкция усилителя

Все резисторы усилителя МЛТ-0,125. Конденсаторы С1, С2, С4- С7, С9, С10 - малогабаритные дисковые (типов КД, КД-1 и т.п.); СЗ, С8 и С11 - типа КМ-5б, КМ-6 и т.п.

Все катушки усилителя бескаркасные. Катушка L1 содержит 2,75 витка посеребренного провода диаметром 0,4-0,8 мм, её наружный диаметр 4 мм, межвитковое расстояние - 0,5 мм. Катушки L2- L5 представляют собой выводы резисторов R2 и R5, намотанные на оправку диаметром 1,5 мм, так чтобы межвитковое расстояние составляло 0,5 мм, и содержит по 1,5 витка. Направления намоток L2, L3 и L4, L5 должны быть одинаковы (т.е., например, L2 и L3 представляют собой катушку из 3-х витков, в разрыв которой включен резистор R2). Катушка L6 содержит 15-20 витков медного эмалированного провода диаметром 0,3 мм, намотанных виток к витку на оправку диаметром 3 мм. Дроссель L7 - стандартный типа ДМ-0,1 с индуктивностью более 20 мкГн. Стабилитрон VD1 - любой с напряжением стабилизации 5,5-7,5 в.

В усилителе могут быть использованы СВЧ малошумящие транзисторы с граничной частотой fгр. более 2 ГГц. Если усилитель будет работать в диапазоне 21-60 каналов, то можно применять транзисторы с fгр. более ГГц, а если - только в диапазоне 21-40 каналов, то - с fгр. более 800 МГц. при этом необходимо в первый каскад ставить транзистор с меньшим коэффициентом шума, а во второй - с большим коэффициентом усиления. В табл. приведены параметры транзисторов, которые можно использовать в усилителе. Транзисторы расположены в порядке ухудшения параметров.

Таблица

Не рекомендуется применять транзисторы КТ372 из-за их склонности к самовозбуждению и ГТ346 - из-за плохих шумовых параметров. Если используются р-п-р транзисторы, то необходимо изменить полярность источника питания усилителя.

Усилитель собран на печатной плате из фольгированного стеклотекстолита толщиной 1-1,5 мм. Рисунок печатной платы и схема монтажа деталей на ней приведены на рис. 2. Плата рассчитана на использование транзисторов с планарными выводами (КТ3132, КТ3101, КТ391 и т.п.), которые припаиваются непосредственно к контактным площадкам со стороны фольги. Однако она допускает и монтаж транзисторов с другим расположением выводов (КТ399, КТ3128 и т.п.), но со стороны монтажа, для чего необходимо просверлить в плате соответствующие отверстия под выводы (см. ниже).

Рис. 2. Монтажная схема усилителя

Выводы транзисторов должны иметь минимальную длину, особенно вывод эмиттера, который не должен превышать 4 мм. Выводы конденсаторов С4, С5, С7 и С10 должны быть не более 4 мм, а конденсаторы С1, С2, С6 и С9 - составлять 4-6 мм (они являются дополнительными индуктивностями, включёнными в контура). Одни из выводов конденсаторов С1 и С2 впаяны в плату, а другие - припаяны непосредственно к центральной жиле входного коаксиального кабеля. Конденсаторы С6 и С9 одним концом припаяны к очищенным от краски головкам резисторов R2 и R6. Другой конец С6 в плату, а С9 - припаян к центральной жиле выходного коаксиального кабеля. Конденсатор С2 одним концом впаян в плату, а другим концом припаян к катушке L1 на расстоянии 3/4 витка от верхнего по схеме конца. Резисторы R3, R4, R7 и R8 установлены вертикально.

Печатная плата помещена в прямоугольный герметичный корпус, разделённый на 4 части экранирующими перегородками (рис. 2, 4). Чертежи деталей корпуса приведены на рис. 3. Он состоит и боковой стенки 1, втулки 2, перегородки 3, 4 и крышек 5. Детали 1, 3, 4 и 5 изготовляют из листовой латуни (удобно использовать отожженную над газовой горелкой пластину фотоглянцевателя), детали 2 вытачиваются из латунного прутка. Втулки 2 рассчитаны на то, что вход и выход усилителя выполнены 75-омным коаксиальным кабелем с наружным диаметром по изоляции 4 мм. Можно использовать другой 75-омный кабель, но в этом случае необходимо соответственно изменить диаметры втулок 2 и отверстий в стенке корпуса 1.

Рис. 3. Детали корпуса усилителя

Разделительный фильтр питания L7, С12, С13 монтируют в отдельной коробочке произвольной конструкции, на которой устанавливают входное антенное гнездо и выходной антенный штекер.

Питать усилитель можно от любого стабилизированного источника 9-12 В, например, от имеющихся в продаже блоков питания транзисторных приемников БП9В, Д2-15 и т.п.

Можно также смонтировать элементы фильтра внутри телевизора рядом с антенным входом ДМВ, а для питания усилителя использовать напряжение 12 В с селектора ДМВ.

Монтаж и настройка усилителя

Собирают усилитель в следующей последовательности. Монтируют на плате все элементы кроме резисторов R1 и R5. Если используются транзисторы не с планарными выводам, то для них сверлят в плате отверстия, а в перегородках 4 делаются прямоугольные вырезы (на рис. 3 показаны штриховой линией). В плату впаиваются соответствующими выступами перегородки 3 и 4. Сгибают и спаивают боковую стенку корпуса 1. В неё герметично впаивают втулку 2. Входной 7 и выходной 8 коаксиальные кабели длиной по 80 см вставляют в отверстия втулок, оплетку разделяют на 2 части и припаивают к корпусу изнутри. Центральная жила кабелей должна выступать внутрь корпуса на 3-4 мм. Вставляют плату в корпус, так чтобы кромки перегородок 3, 4 и кромка стенки 1 лежали в одной плоскости (рис. 4), и пропаивают стыки перегородок между собой и корпусом. Кроме того в 10-ти точках припаивают нечетную плату к стенке 1. Места пайки показаны на рис. 2 и рис. 4. Припаиваются к центральным жилам кабелей элементы С1, L1 и С9, L6. Внимательно сверяют рис. 1, 2 и 4 правильности монтажа.

Рис. 4. Конструкция усилителя

Далее производят настройку усилителя. Для этого по выходному кабелю 8 подают на усилитель питание. Измеряя напряжение U1 на резисторе R3 подбором резистора R1 устанавливают значение тока I1 (I1 = U1/R3) в соответствии с табл. 1 для транзистора первого каскада. Впаивают в плату подобранный резистор R1. Аналогичную процедуру проделывают для второго каскада, измеряя напряжение U2 на резисторе R7 и устанавливая ток I2 = U2/R7 в соответствии с табл. 1. Впаивают резистор R5. На рис. 1 величины R1 и R5 даны ориентировочно, реально они могут значительно отличаться от указанных. Проверяют отсутствие самовозбуждения усилителя. Для этого подключают параллельно R3 вольтметр и касаются пальцем вывода коллектора транзистора VT1. Если первый каскад не возбуждается, то показание вольтметра не изменится. Аналогично проверяют второй каскад. Устранить самовозбуждение (о его наличии свидетельствует резкое уменьшение тока транзистора при его касании пальцем) можно лишь заменой транзистора. Следует отметить, что усилитель не склонен к самовозбуждению - из нескольких десятков изготовленных усилителей возбуждался лишь один, собранный на транзисторах КТ372А. Проверяют потребляемый усилителем ток, которых должный быть равен: I1 + I2 = 10 мА; при необходимости подбирают резистор R8, так чтобы ток через стабилитрон VD1 составлял около 10 мА. Заключительной операцией является герметизация усилителя. Для этого крышки 5 пропаивают по периметру корпуса, а места ввода коаксиального кабеля дополнительно промазываю каким-либо герметиком, водостойким клеем и т.п. Затем усилитель крепят к мачте антенн.

Антенна ДМВ

Как указывалось выше, добиваться очень большого коэффициента усиления антенны ДМВ не имеет смысла, поскольку это ведет к неоправданному усложнению её конструкции. Однако и рассчитывать на дальний прием с малоэффективной антенной тоже не приходится.

Опыт конструирования и использования антенн ДМВ показывает, что наиболее простой и в то же время весьма эффективной является Z-антенна с рефлектором. Её отличительными особенностями является широкополостность, большой коэффициент усиления, хорошее согласование непосредственно с 75-омным коаксиальным кабелем и некритичность размеров.

Конструкция антенны для 21-60 каналов показана на рис. 5. Если антенна будет использоваться в диапазоне 61-100 каналов, то все её размеры необходимо уменьшить в 1,5 раза. Активное полотно 1 антенны изготавливается из алюминиевых полос и скрепляется «внахлест» винтами с гайками. В точках соприкосновения пластин должен быть надежный электрический контакт. На матче 6 (она может быть металлической или деревянной) полотно закрепляется при помощи стоек-опор 2 в точках С и D. Поскольку эти точки имеют нулевой относительно земли потенциал, то стойки 2 могут быть металлическими. Кабель 3 подсоединяется к точкам А и В (оплетка - к одной точке, а жила - к другой) и прокладывается вдоль полотна по нижней стойке 2 и по матче 6 к усилителю 7. Закрепляется кабель проволочными хомутиками. Полотно 1 может быть само по себе использовано как антенна. Её коэффициент усиления составляет 6-8 дБ. Однако лучше снабдить полотно рефлектором.

Рис. 5. Антенна ДМВ, а) полотно антенны; б) антенна с простым рефлектором; в) антенна со сложным рефлектором

Простейший рефлектор 4 (рис. 5б) представляет собой плоский экран, изготовленный из трубок или отрезков толстого провода. Диаметр элементов рефлектора некритичен и может быть 3-10мм. Антенна с плоским рефлектором имеет коэффициент усиления 8-10 дБ. Поднять коэффициент усиления до 15 дБ (эквивалентно 40-элементной антенне «волновой канал») позволяет сложный рефлектор типа «полуразвалившийся короб» (рис. 5в). Конструктивное исполнение такого рефлектора может быть самым различным, в зависимости от Ваших возможностей.

Пространственная ориентация антенны, изображённая на рис. 5 соответствует приему сигналов с горизонтальной поляризацией. Для приема вертикально-поляризованных сигналов необходимо полотно и рефлектор повернуть на 90°.

Усилитель ДМВ располагают в непосредственной близости от антенны (см. рис. 5). Вход усилителя с полотном антенны соединяют тем же кабелем, что заделан в усилитель. Входной кабель усилителя наращивают кабелем снижения. Желательно, чтобы он был как можно большего диаметра (от этого зависят потери в кабеле), использовать кабель диаметром 4мм можно лишь в том случае, если его длина не превышает 10м.

Соединения кабелей должно выполняться «ветик», так чтобы минимальным образом нарушалась коаксиальная структура фидера.

Если нет возможности изготовить описанную антенну, то усилитель может быть с несколько худшими результатами использован с промышленными наружными широкополосными антеннами ДМВ, например, типа, АТНГ(В)-5.2.21-41 (торговое название «ГАММА-1»).

Установка антенны определяется тем, на какой тип прохождения ДМВ вы рассчитываете. Если необходимо вести прием непосредственно за зоной обслуживания телецентра (60-200км), то антенну следует установить так, чтобы в направлении прихода сигналов между ней и линией горизонта не было препятствий (дома, холмы и т.п.). Если же Вы ориентируетесь на сверхдальний прием при тропосферном или волновом распространении (при этом сигнал приходит «с неба» под углом 5-10° к горизонту), то не очень близко расположенные препятствия обычно помехой не является.

Практический результат приема ДМВ

В заключение несколько слов о практических результатах приема ДМВ. Изготовление по прилагаемому описанию антенны с усилителем в течение нескольких лет использовался в г. Одессе для регулярного приема сигналов Кишиневского телецентра (расстояние - 160 км). За городом, в зоне радиотени для MB телецентра, уверенно принимаются сигналы маломощных ДМВ ретрансляторов, находящихся на противоположной стороне Одесского залива (расстояние - 60-80км). В ясные дни весенних и летних месяцев с хорошим качеством ведется прием болгарской программы БТ2 из Варны (расстояние - 500 км) и турецкой программы TV2 из Стамбула (расстояние более 600км).

Самодельные антенны

И. НЕЧАЕВ, г. Курск
Радио, 2000 год, №8

Передача телевизионного сигнала нередко может производится от нескольких разных источников, с разных направлений и с разной мощностью. Это очень часто вызывает проблемы с их приемом и заставляет многих пользователей устанавливать по несколько антенн.
Кроме того что это не совсем удобно возникает еще одна проблема- последующее суммирование сигналов на входе телевизионного приемника.
В такой ситуации решить проблему поможет антенный усилитель , обеспечивающий не только усиление сигналов, но и их фильтрацию.

Одна из проблем, с которой телезрителям приходится иметь дело при просмотре телевизионных программ, - необходимость приема сигналов с разных направлений и с различными уровнями. Это вынуждает их применять две и более направленные антенны, а при малом уровне сигнала - активные антенны или антенные усилители , приходится включать сумматоры или разветвители телесигналов . К сожалению, все это часто не обеспечивает желаемое качество приема.

Причина этого не обязательно кроется в плохом фидере или неудачном его согласовании. Если, например, у вас есть несколько антенн, рассчитанных на работу в одном диапазоне, то прием одного и того же сигнала, особенно мощного, будет возможен двумя и большим числом антенн. Однако в этом случае из-за различного времени распространения сигнала в фидерах появляется многоконтурность или размытость изображения, хотя уровень сигнала вполне достаточен для высококачественного приема.

Этот недостаток можно устранить, применив полосовые фильтры или селективные усилители, которые выделяют один или несколько сигналов, принимаемых одной из антенн, и подавляют мешающие. И так - после каждой антенны, фильтруя при этом разные каналы. Затем все сигналы суммируют. Для диапазона MB эту задачу решают использованием усилителей и фильтров, рассмотренных в . Для диапазона ДМВ описаний таких конструкций почти нет. Поэтому здесь описаны варианты селективных усилителей именно для диапазона ДМВ.

Следует, однако, обратить внимание на то, что применение фильтров не всегда целесообразно (хотя и допустимо). Дело в том, что, во-первых, фильтры вносят затухание, и при приеме слабых сигналов это может сказаться на качестве изображения. Во-вторых, АЧХ фильтров, особенно узкополосных, существенно зависит от их согласования с соединительными кабелями. Поэтому даже небольшие изменения в сопротивлении нагрузок могут сильно менять АЧХ и снижать качество приема. Чтобы устранить этот нежелательный эффект, на входе и выходе фильтра нужно установить усилительные каскады.

Принципиальная схема селективного усилителя для выделения одного или нескольких близко расположенных сигналов показана на рис. 1.

Селективный антенный усилитель ДМВ диапазона. схема

В устройстве применен полосовой фильтр из двух связанных контуров L2C7 и L3C9. На входе фильтра установлен усилительный каскад на транзисторе VT1, а на выходе - два каскада на транзисторах VT2 и VT3. Общий коэффициент усиления достигает 20...23 дБ, а полоса пропускания определяется полосовым фильтром.

Сигналы, принятые антенной, поступают на фильтр C1L1C2, который подавляет сигналы с частотой менее 450 МГц. Диоды VD1, VD2 защищают транзистор VT1 от мощных сигналов и электрических наводок от грозовых разрядов. С входного каскада сигнал проходит в первый контур L2C7. Чтобы получить необходимую его добротность, применено частичное включение (к отводу катушки L2). Для связи с контуром L3C9 включен конденсатор С8 (емкостная связь). Сигнал с части витков катушки L3 приходит на базу транзистора VT2, а после усиления - на базу транзистора VT3. АЧХ выходного усилителя с целью дополнительного повышения его избирательности можно скорректировать настройкой контура L4C11 в цепи обратной связи.

Диоды VD3, VD4 защищают усилитель от электрических разрядов со стороны телевизора. Они могут возникать из-за того, что импульсный блок питания современных аппаратов через конденсаторы небольшой емкости соединен с сетью 220 В. Питается усилитель от стабилизированного источника напряжения 12 В и потребляет ток около 25 мА. Диод VD5 защитит усилитель при подключении к нему источника питания в неправильной полярности. Если его планируется питать по отдельному проводу, то напряжение подают непосредственно на диод VD5, а если по кабелю снижения, вводят в усилитель развязывающие элементы L5, С16.

Все детали усилителя размещают на одной стороне печатной платы из двустороннего фольгированного стеклотекстолита, изображенной на рис. 2

Вторая сторона платы оставлена почти полностью металлизированной. На ней лишь вырезаны площадки для входа, выхода и питающего напряжения (на рисунке они показаны штриховой линией). Металлизацию обеих сторон соединяют одну с другой по контуру платы припаянной фольгой. После настройки усилителя плату со стороны деталей закрывают металлической крышкой, припаяв ее к ней.

В усилителе можно применить транзисторы КТ382А.Б, а если не требуется высокой чувствительности, подойдет и КТ371А; диоды КД510А, КД521А.

Конденсаторы С7, С9, С11 - КТ4-25, остальные - К10-17, КМ, КЛС; рези-сторы - МЛТ, С2-10, С2-33, Р1-4. Выводы всех деталей должны быть минимальной длины.

Катушка L1 намотана проводом ПЭВ-2 0,4 на оправке диаметром 2,5 мм и содержит 2,8 витка. Катушки L2, L3 выполнены проводом ПЭВ-2 0,7 на оправке диаметром 3 мм. Длина намотки - 7 мм. Они имеют по три витка с отводом от середины первого витка. Катушка L4 намотана тем же проводом и содержит два витка, а катушка L5 - проводом ПЭВ-2 0,4 и имеет 15 витков, обе - на оправке диаметром 4 мм.

Конструкция конденсатора С8 показана на рис. 3. Он выполнен из двух пластин из жести или толстой фольги, которые припаивают к контактным площадкам платы. Изменяя расстояние между пластинами, меняют емкость конденсатора.

Налаживание усилителя начинают с установки и проверки необходимых режимов по постоянному току. Подбором резистора R1 добиваются напряжения 4...5 В на коллекторе транзистора VT1. Режим транзисторов VT2, VT3 получается автоматически.

Для настройки АЧХ усилителя используют панорамный индикатор. Конденсаторами С7 и С9 настраивают контуры на желаемые частоты. При указанных номиналах центральную частоту фильтра можно изменять от 500 до 700 МГц. Полосу пропускания устанавливают регулировкой емкости конденсатора С8. При этом в небольших пределах изменяется и коэффициент усиления усилителя. Подстройкой конденсатора С11 получают максимальный коэффициент усиления на требуемой частоте.

Изменением емкости конденсатора С8 можно добиться минимальной полосы пропускания усилителя в 10...12 МГц при одногорбой АЧХ. Это необходимо для выделения сигнала только одного телевизионного канала. Если же нужно выделить два смежных канала, то полосу пропускания увеличивают до 40...50 МГц (сближают пластины конденсатора С8) при двугорбой АЧХ с небольшой неравномерностью. Кроме того, на АЧХ фильтра оказывает влияние и расположение отводов катушек L2, L3.

Однако эфирная обстановка бывает сложной. Например, в Курске в диапазоне ДМВ вещание ведется на 31-м и 33-м каналах из одного места и с большой мощностью, а на 26-м и 38-м каналах - из другого места и с меньшей мощностью. Такой вариант довольно типичен для большинства городов страны. Поэтому для приема и выделения сигналов 31 -го и 33-го каналов можно применить уже описанный усилитель. Для приема же сигналов 26-го и 38-го каналов (или двух других с большим частотным разносом) такой усилитель не годится. Здесь необходим другой, который имеет две полосы пропускания, т. е. содержит два фильтра.

Принципиальная схема такого усилителя показана на рис. 4.

Сигнал с антенны через фильтр C1L1C2 поступает на первый усилительный каскад на транзисторе VT1. С его выхода сигнал разделяется и приходит на два независимых каскада на транзисторах VT2 и VT3, каждый из них нагружен на свой полосовой фильтр: L2C10-С12L3 и L4C13-C15L5. К фильтрам подключены усилительные каскады на транзисторах V4 и VT5, выходы которых работают на одну и ту же нагрузку. Общий коэффициент усиления этого устройства - 18...20 дБ, а потребляемый ток - примерно 40 мА.

В таком усилителе применяют те же детали, что и в рассмотренном выше. Чертеж его печатной платы с размещением деталей представлен на рис. 5.

Налаживание проводят аналогично. Подбором резисторов R11 и R12 устанавливают постоянное напряжение около 5 В на коллекторах транзисторов VT4 и VT5. Фильтры настраивают на желаемые частоты. Подстройкой конденсаторов С6 и С7 получают максимальное усиление на выбранных частотах.

Если необходимо сузить полосу пропускания и повысить избирательность фильтра, добиваются увеличения добротности контуров, используя более толстый посеребренный провод в катушках и подстроенные конденсаторы с воздушным диэлектриком, или увеличивают число контуров.

ЛИТЕРАТУРА
1. Нечаев И. Активная антенна диапазона MB. - Радио, 1997, № 2, с. 6, 7.
2. Нечаев И. Активная антенна МВ-ДМВ. - Радио,1998, № 4, с. 6 - 8.
3. Нечаев И. Телевизионный антен* ный усилитель. - Радио, 1992, № 6, с. 38,39.
4. Нечаев И. Комбинированные усилители ТВ сигналов. Радио, 1997, №10, с. 12, 13.
5. Нечаев И. Антенный усилитель ДМВ на микросхеме. - Радио, 1999, № 4, с. 8, 9.
6. Нечаев И. Сумматоры телесигналов. - Радио. 1996, № 11, с. 12, 13.
7. Нечаев И. Корректирующий антенный усилитель. - Радио, 1994, № 12, с. 8 -10.

В последнее время большое распространение получило вещание телевидения на ДМВ. Однако из-за малых мощностей ретрансляторов, специфики распространения ДМВ и низкой чувствительности телевизоров зоны уверенного приема телесигналов небольшие. Приходится применять сложные антенны с большим усилением и малошумящие антенные усилители. Предлагаемый антенный усилитель несложен по конструкции, прост в наладке и имеет следующие параметры:

Полоса усиливаемых частот, . . . . 470...790 МГц Неравномерность АЧХ, . . . . . . . 3 Дб Коэффициент усиления,. . . . . . . 12 Дб Входное сопротивление. . . . . . . 75 Ом Выходное сопротивление. . . . . . 75 Ом Напряжение питания,. . . . . . . . 12 B Потребляемый ток, . . . . . . . . 12 mA

Входная цепь (рис. 1), выполненная в виде Т-образного фильтра верхних частот и состоящая из элементов Cl , C2 , L1 и L2 , обеспечивает согласование усилителя с антенной. Два каскада усиления собраны по схеме с общим эмиттером. Стабилизация режимов транзисторов по постоянному току осуществляется с помощью отрицательных обратных связей через резисторы R1 и R4 . Такая схема стабилизации позволяет непосредственно заземлить эмиттерные выводы транзисторов, что обеспечивает высокий устойчивый коэффициент усиления каскадов. Малые сопротивления резисторов нагрузок каскадов исключают возможность возбуждения усилителя на низких частотах. Питание усилителя осуществляется по сигнальному кабелю напряжением +12В от СКД телевизора, согласно рис. 2. Дроссель L3 и конденсатор С7 предназначены для разделения постоянного напряжения и высокочастотного сигнала. В усилителе постоянное напряжение через резистор R6 питает его каскады, а высокочастотный сигнал через конденсатор С6 подается в кабель снижения.

Усилитель смонтирован на плате размерами 60 x37мм , изготовленной из фольгированного стеклотекстолита толщиной 1,5...2 мм . Транзисторы вставлены в отверстия диаметром 6мм , просверленные в плате, а монтаж выполнен на опорных точках, вырезанных резаком в фольге (рис. 3). Катушка L1 , конденсаторы С1 , С6 и резистор R6 подпаиваются одним концом непосредственно к центральной жиле кабеля. Экранирующий корпус изготавливают из меди толщиной 0,2...0,4 мм . Плата подпаивается в нескольких точках к стенкам корпуса. Экранирующие оплетки кабелей припаиваются непосредственно к корпусу. Вход и выход кабелей из корпуса дополнительно герметизируется клеем “суперцемент” или аналогичным, водостойким.

Фильтр разделения напряжения питания и высокочастотного сигнала конструктивно следует собрать в отдельном медном корпусе (рис. 4). С одной стороны на корпусе укреплено гнездо для подключения кабеля снижения антенны, а с другой - штекер для подключения непосредственно к гнезду антенного входа телевизора. Опорную точку для подведения напряжения питания можно изготовить из стеклянного изолятора выводов бумажного конденсатора МБГЧ-1 или аналогичного.

В усилителе могут быть применены резисторы МЛТ-0,125 , МЛТ-0,25 , конденсаторы КМ , КД , КПК-МН , транзисторы ГТ329, ГТ341, ГТ361, КТ372, дроссель L3 - ДМ 0,1-10 или же двадцать витков провода ПЭЛШО-0,1 намотанных на стержне Ф600 2,74Х12,7 мм . Катушки L1 и L2 бескаркасные, L1 имеет 10 витков провода ПЭЛ-0,5 , а L2 - 2 витка провода ПЭЛ-0,8 , намотка рядовая, на оправке диаметром 5 мм .

Настройка антенного усилителя не вызывает затруднений. Подбором резисторов R1 и R4 устанавливают токи транзисторов VT1 и VT2 соответственно 3 и 5 мА . Конденсатор С2 подстраивают по наилучшему качеству изображения. После настройки усилителя на корпус надевается крышка из меди и пропаивается по всему периметру. Усилитель необходимо установить в непосредственной близости от антенны.

Поделиться