Какие параметры измеряет цифровой частотомер. Частотомер - назначение, виды, особенности использования

Среди общепромышленных, употребляемых для учета продукции и сырья, распространены товарные, автомобильные, вагонные, вагонеточные и др. Технологические служат для взвешивания продукции в ходе производства при технологически непрерывных и периодических процессах. Лабораторные применяют для определения влажности материалов и полуфабрикатов, проведения физикохимического анализа сырья и других целей. Различают технические, образцовые, аналитические и микроаналитнческие .

Можно разделить на ряд типов в зависимости от физических явлений, на которых основан принцип их действия. Наиболее распространены приборы магнитоэлектрической, электромагнитной, электродинамической, ферродинамической и индукционной систем.

Схема прибора магнитоэлектрической системы показана на рис. 1.

Неподвижная часть состоит из магнита 6 и магнитопровода 4 с полюсными наконечниками 11 и 15, между которыми установлен строго центрированный стальной цилиндр 13. В зазоре между цилиндром и полюсными наконечниками, где сосредоточено равномерное радиально направленное , размещается рамка 12 из тонкой изолированной медной проволоки.

Рамка укреплена на двух осях с кернами 10 и 14, упирающихся в подпятники 1 и 8. Противодействующие пружины 9 и 17 служат токоподводами, соединяющими обмотку рамки с электрической схемой и входными зажимами прибора. На оси 4 укреплена стрелка 3 с балансными грузиками 16 и противодействующая пружина 17, соединенная с рычажком корректора 2.

01.04.2019

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Соединение кабелей — технологический процесс получения электрического соединения двух отрезков кабеля с восстановлением в месте соединения всех защитных и изоляционных оболочек кабеля и экранных оплеток.

Перед соединением кабелей измеряют сопротивление изоляции . У неэкранированных кабелей для удобства измерений один вывод мегаомметра поочередно подключают к каждой жиле, а второй — к соединённым между собой остальным жилам. Сопротивление изоляции каждой экранированной жилы измеряют при подключении выводов к жиле и ее экрану. , полученное в результате измерений, должно быть не менее нормированного значения, установленного для данной марки кабеля.

Измерив сопротивление изоляции, переходят к установлению или нумерации жил, или направлений повива, которые указывают стрелками на временно закрепленных бирках (рис. 1).

Закончив подготовительные работы, можно приступать к разделке кабелей. Геометрию разделки соединений концов кабелей видоизменяют в целях обеспечения удобства восстановления изоляции жил и оболочки, а для многожильных кабелей также для получения приемлемых размеров места соединения кабелей.

МЕТОДИЧЕСКОЕ ПОСОБИЕ К ПРАКТИЧЕСКОЙ РАБОТЕ: «ЭКСПЛУАТАЦИЯ СИСТЕМ ОХЛАЖДЕНИЯ СЭУ»

ПО ДИСЦИПЛИНЕ: «ЭКСПЛУАТАЦИЯ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И БЕЗОПАСНОЕ НЕСЕНИЕ ВАХТЫ В МАШИННОМ ОТДЕЛЕНИИ »

ЭКСПЛУАТАЦИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ

Назначение системы охлаждения:

  • отвод теплоты от ГД;
  • отвод теплоты от вспомогательного оборудования;
  • подвод теплоты к ОУ и другому оборудованию (ГД перед пуском, ВДГ поддержание в "горячем" резерве и т.д.);
  • прием и фильтрация забортной воды;
  • продувание кингстонных ящиков летом от забивания медузами, водорослями, грязью, зимой - ото льда;
  • обеспечение работы ледовых ящиков и др.
Структурно система охлаждения подразделяется на пресной воды и систему охлаждения заборной воды. Системы охлаждения АДГ выполняются автономно.

Одним из основных параметров периодических и пульсирующих токов выступает , определяющая количество периодических колебаний за полный цикл и являющая основной характеристикой системы единиц СИ. Потребность в точном определении частоты возникает в различных сферах научной и практической деятельности, особое значение её определение имеет в электротехнике, радиоэлектронике, телекоммуникациях и пр.

Для фиксации частоты используют частотомеры – это специальные электроизмерительные приборы, использующиеся для фиксации частоты периододического процесса либо гармонических составляющих спектра сигнала.

Классификация приборов

Исходя из метода измерений, приборы бывают непосредственной оценки (аналоговые) и устройства сравнения (гетеродинные, электронно-счетные).

В целях определения частоты источников питания радиоустройств используют:

  • электромагнитные;
  • электро- и ферродинамические, использующие метод сопоставления с некой измерительной шкалой;
  • камертонные приборы.

Такие устройства характеризуются узкими пределами измерений, стандартно в диапазоне +-10% одной из стандартного ряда частот 25, 50, 60, 100, 150, 200, 300, 400, 430, 500, 800, 1000, 1500 и 2400 Гц, и функционируют при номиналах напряжения 36, 110, 127, 220, 380 В.

Для подсчета предельно низких частот (менее 5 Гц) используют магнитоэлектрические приборы в комплекте с секундомером. Для этого путем подсчета количества периодов колебаний за определенный временной промежуток, проводится полное измерение.


Помимо этого, все частотомеры условно разделяют на аналоговые и цифровые приборы. Для первого вариант измеренные сведения указываются стандартным «шкально-стрелочным» методом, а во втором – посредством цифрового дисплея.

По конструктивному исполнению их делят на:

  • щитовые;
  • переносные;
  • стационарные.

T t или частотой fзап = 1/T.

Измеряемый сигнал (допустим синусоидальной формы, рис. 4.3, а ) подается на вход А и через регулируемый аттенюатор АT поступает на вход формирователя Ф а . На его выходе образуется последовательность коротких импульсов с частотой следования, равной измеряемой частоте fx.

Эта последовательность импульсов поступает на один из входов временного селектора ВС. На другой его вход через блок автоматики БА поступает последовательность прямоугольных управляющих импульсов, длительность которых определяет счетный интервал времени Tсч.

Эти импульсы формируются из напряжения опорного кварцевого генератора КГ путем деления его частоты в делителе частоты ДЧ (рис. 4.3, г). При коэффициенте деления n значение счетного интервала

Прошедшие за время счета через временной селектор N отсчитываются счетчиком импульсов Сч . В блоке индикации БИ определяется измеряемая частота

,

и полученное значение отображается на блоке индикации.

15. Принцип работы электронного частотомера при измерении периода

В основу метода дискретного счета заложено определение (подсчет) числа циклов периодического сигнала в течение некоторого счетного устанавливаемого интервала времени. Этот метод позволяет решить и обратную задачу, т. е. измерение временных интервалов путем определения числа специально сформированных счетных импульсов на измеряемом интервале времени.

Допустим, имеется интервал времени T , последовательность коротких импульсов с периодом следования t или частотой fзап = 1/T

Эти импульсы называют заполняющими, а частоту – частотой заполнения fзап. Число импульсов, попавших во временной интервал, равно N.

Соответствие между этими параметрами можно записать в виде выражения:

Сигнал со входа Б через аттенюатор А Т подается на формирователь Ф Б , где формируется последовательность импульсов где формируется последовательность импульсов с периодом, равным измеряемому периоду Tx , а на выходе блока автоматики БА – управляющий импульс длительностью Tx. При этом переключатель на входе БА находится в положении ТБ.

Путем умножения или деления частоты опорного кварцевого генератора КГ в базе времени БВ образуется последовательность коротких счетных импульсов с периодом . Эти импульсы также называют метками времени с периодом (частотой ).

Прошедшие за время счета через временной селектор N счетных импульсовпересчитываются в значение измеряемого периода , и результат отображается в отсчетном устройстве. Значение периода счетных импульсов (меток времени) может устанавливаться соответствующим дискретным переключателем.

Если переключатель на входе блока автоматики установить в положение Т Б 10, то в процессе измерения периода может осуществляться
усреднение серии измеренных его значений, что достигается путем дополнительного деления частоты измеряемого сигнала (или соответственно умножения измеряемого периода) в k раз. Тогда при отсчитанном числе счетных импульсов N и периоде t сч значение измеряемого периода будет.

16. Общие сведения о приборах для исследования формы, спектра нелинейных искажений сигнала

Осциллограф - это электронное устройство, имеющее канал y - вертикального отклонения, канал x – (ось времени) горизонтального отклонения и вспомогательный канал z - канал подсветки луча.

Анализатор спектра (АС) – это чувствительный селективный прибор, предназначенный для определения частотных составляющих сигнала т.е. спектра амплитуд.

Измеритель модуляции - измерительный прибор, предназначенный для определения характеристик модулированного радиосигнала - коэффициента амплитудной модуляции и (или)девиации частоты.

17. Структурная схема универсального осциллографа


Электронно-лучевая трубка (ЭЛТ) определяет принцип действия прибора, и от ее характеристик в значительной мере зависят параметры и возможности применения осциллографа в целом. В осциллографах используют главным образом ЭЛТ с электростатическим управлением лучом.

Принцип отображения формы напряжения на экране осциллографической трубки в общих чертах можно представить следующим образом.

Исследуемое напряжение является функцией времени, отображаемой в прямоугольных координатах графиком u = f (t ). Две пары пластин ЭЛТ отклоняют электронный луч в двух взаимно перпендикулярных направлениях, которые можно рассматривать как координатные оси. Поэтому для наблюдения на экране ЭЛТ исследуемого напряжения необходимо, чтобы луч отклонялся по горизонтальной оси пропорционально времени, а по вертикальной оси - пропорционально исследуемому напряжению (в каждый момент времени).

С этой целью к горизонтально отклоняющим пластинам подводят пилообразное напряжение, которое заставляет луч перемещаться по горизонтали с постоянной скоростью слева направо и быстро возвращаться обратно. Расстояние, проходимое лучом вдоль горизонтальной оси, получается пропорциональным времени.

Исследуемое напряжение подается на вертикально отклоняющие пластины, и, следовательно, положение луча в каждый момент времени однозначно соответствует значению исследуемого сигнала в этот момент. За время действия пилообразного напряжения луч вычерчивает кривую исследуемого сигнала. Наблюдаемое на экране изображение называют осциллограммой .

Канал вертикального отклонения Y , или канал сигнала, предназначен для передачи напряжения источника исследуемого сигнала на вход вертикально отклоняющих пластин ЭЛТ.

Канал горизонтального отклонения X , или канал развертки, служит для создания и передачи напряжения, вызывающего горизонтальное перемещение луча, преимущественно пропорционально времени.

Канал управления яркостью Z предназначен для передачи со входа Z на управляющий электрод ЭЛТ сигналов, модулирующих яркость свечения.

18. Назначение канала Y универсального осциллографа, основные параметры канала

Входное устройство (Аттенюатор) – масштабирует сигнал до уровня обозначенного в технических условиях, производит масштабирование сам оператор.

Предварительный усилитель(Эмиттерный повторитель) :

1. Усиливает сигнал

2. С приходом сигнала формирует синхроимпульс

3. Согласует Rвыхода с низкоомным входом линии задержки

Линия задержки задерживает сигнал до 140мкс, что обеспечивает получение на экране неискаженного сигнала.

Усилитель вертикального отклонения (УВО) который усиливает сигнал до установленной величины.

Канал Y служит для развертывания исследуемого сигнала по амплитуде (предназначен для передачи напряжения источника исследуемого сигнала на вход вертикально отклоняющих пластин ЭЛТ.)

Все сложные манипуляции, касающиеся электричества и домашней проводки, многие оставляют для профессионалов. Иногда проверить силу сопротивления, постоянное или переменное напряжение, а также количество полных циклов изменения тока нужно, а вызывать электрика нет возможности. В таком случае на помощь придет полезное приспособление – мультиметр. Не смотря на то, что данная функция не является основной, многие интересуются тем, как измерить частоту мультиметром.

Зачастую мультиметр-частотомер необходим для измерений в отдельных приборах, таких как генератор импульсного блока питания. Измерение сетевого значения лишь подтвердит наличие показателя в 50 Гц. Мультиметр, частота которого в большинстве моделей имеет диапазон до 30 Гц, применяется лишь в быту, для производственных целей используются более сложные приспособления, такие как высокочастотный искровой тестер. Необходимо детально ознакомиться не только с конструкцией измерительного аппарат, но и с особенностями измеряемого прибора, для того чтобы понять, как измерить частоту тока мультиметром.

Конструкция мультиметра

Тестер со встроенным частотомером - отличное приспособление для измерений, но существует ряд альтернативных методов, изучить которые можно ознакомившись со строением прибора. Основной состав данного аппарата включает в себя функции амперметра, омметра и вольтметра. Используют такое приспособление при замерах постоянного и переменного напряжения, а также сопротивления.

Наиболее распространенной моделью данного прибора является цифровая, поскольку она, в отличии от аналоговой, позволяет произвести более точные замеры. Классическая конструкция включает в себя:

  • Индикатор. Он расположен в верхней части аппарата и служит экраном, на котором отображаются данные проверки.
  • Переключатель. Позволяет выбирать пределы показателей и величины. Вокруг переключателя нанесена шкала, которая в большинстве современных аппаратов имеет пять диапазонов. Первое значение указывает на 200 Ом. Если установить переключатель на эту шкалу, то измерить сопротивление больше данного показателя не будет возможности. Также шкала включает в себя показатели переключения между постоянным и переменным током, и значок прозвонки.
  • Гнезда для щупов. Позволяют подключить к тестеру измеряемый прибор. В большинстве моделей в нижней части размещено три разъема.
    Для тех же, кто интересуется тем, как замерить частоту мультиметром, необходимо обратить внимание на модели со специальными функциями. Помимо данного показателя, померить тестером можно индуктивность, температуру, электрическую емкость. Наличие дополнительных функций существенно влияет на стоимость, потому не каждый может позволить себе приобрести для применения в быту такое приспособление. Отличным решением может стать приставка к мультиметру. Она позволяет при помощи аппарата со стандартным набором функций измерить нужный показатель.

Измерение частоты

Стоит напомнить, что интересуясь тем, как померить частоту мультиметром, предварительно важно ознакомиться с особенностями аппарата, который предстоит проверить. Только так можно достичь желаемого результата с максимально точными показателями. Измерение частоты мультиметром со специальной функцией является наиболее удобным, поскольку в данном случае нет необходимости в использовании специальных приставок.

Происходят такие замеры в несколько этапов:

  • В первую очередь необходимо проверить измеритель на точность. Известно, что в сети частота имеет значение 50 Гц. Чтобы определить погрешность в работе тестера, необходимо подсоединить его к розетке. Показатель, отличающийся от 50 Гц, и будет погрешностью измерительного аппарата.
  • Далее, при помощи измерительных щупов необходимо подсоединить тестер к измеряемому прибору. Предварительно ознакомившись с инструкцией использования тестера, можно узнать необходимое для точности проверки напряжение. Установив показатель напряжения на нужное значение, можно приступать непосредственно к определению полных циклов изменения тока.
  • После этого измерение частоты тестером будет зависеть только от того, как изменяется период переменного тока.

Многих также интересует, как проверить частоту мультиметром при помощи специальных приставок. Частотомер — приставка к мультиметру является отличной альтернативой дорогим измерителям с множеством функций. Многие тестеры с функцией определения циклов изменения тока имеют низкую чувствительность, потому дают неточные показатели. Приставка является дополняющим средством к измерителю. Она позволяет преобразовать полученные данные в напряжение.

Чтобы измерение частоты тока мультиметром имело минимальную погрешность, необходимо правильно подсоединить частотомер. Переключатель рода работ в измерительном приборе необходимо настроить так, чтобы переключатель указывал на постоянное напряжение. В таком случае нет необходимости перестраивать приставку при подключении к аппарату с входным сопротивлением, превышающим 1 мОм.

Измерение частоты тестером может давать разные результаты, зависящие в первую очередь от точности работы аппарата. Потому при выборе способа проверки необходимо решить, насколько серьезно влияет на показатели погрешность прибора и/или приставки.

Лабораторная работа № 4

ИССЛЕДОВАНИЕ ЭЛЕКТРОННО-СЧЕТНОГО ЧАСТОТОМЕРА

Цель работы: Изучить метрологические характеристики, принципы работы, структурную схему, источники погрешностей электронно-счетного частотомера. Научиться оценивать погрешности результатов измерения частоты, обусловленные погрешностями частотомера. Получить практические навыки работы с частотомером.

Используемые приборы: электронно-счетный частотомер (ЭСЧ) Ч3-34А, генератор низкочастотных сигналов Г3-109.

Краткие теоретические сведения

Измерение частоты, частотомеры. Измерения частоты – наиболее точный и быстро развивающийся вид измерений. Во-первых, единица времени (частоты) является основной единицей системы СИ; во-вторых, определение секунды связано с пересчетом событий, а пересчет является самым точным методом измерений; в-третьих, повышение точности измерений частоты необходимо для прикладного использования в телекоммуникациях, навигации, космической отрасли. За последние 50 лет суммарная относительная погрешность первичных государственных эталонов на основе цезиевых реперов частоты уменьшилась с ± 1×10 -10 до ± 1,5×10 -15 , то есть точность возрастала на порядок за каждые 10 лет. Никакой другой вид измерений не имеет такого значительного прироста, ведь возрастание точности в 2–3 раза за 10 лет уже считается отличным показателем. Государственный первичный эталон и государственная поверочная схема для средств измерений времени и частоты” можно разделить на 3 сегмента:

    рабочие средства измерения частоты с погрешностью не более ± 1×10 -7 ;

    рабочие эталоны частоты с погрешностью не более ± 1×10 -12 ;

    национальные и вторичные эталоны частоты с погрешностью менее ± 1×10 -13 .

Частотомер - измерительный прибор для определения частоты периодического процесса или частот гармонических составляющих спектра сигнала.

Классификация частотомеров

    По методу измерения- приборы непосредственной оценки (напр. аналоговые) и приборы сравнения (напр. резонансные, гетеродинные, электронно-счетные).

    По физическому смыслу измеряемой величины - для измерения частоты синусоидальных колебаний (аналоговые), измерения частот гармонических составляющих (гетеродинные, резонансные, вибрационные) и измерения частоты дискретных событий (электронно-счетные, конденсаторные).

    По исполнению (конструкции) - щитовые, переносные и стационарные.

    По области применения частотомеры включаются в два больших класса средств измерений - электроизмерительные приборы и радиоизмерительные приборы. Следует заметить, что граница между этими группами приборов весьма прозрачна.

В группу электроизмерительных приборов входят аналоговые стрелочные частотомеры различных систем, вибрационные, а так же, отчасти, конденсаторные и электронно-счетные частотомеры. В группу радиоизмерительных приборов входят резонансные, гетеродинные, конденсаторные и электронно-счетные частотомеры.

Резонансные частотомеры

Принцип действия резонансных частотомеров основан на сравнении частоты входного сигнала с собственной резонансной частотой перестраиваемого резонатора. В качестве резонатора может быть использован колебательный контур, отрезок волновода (объемный резонатор) или четвертьволновой отрезок линии. Контролируемый сигнал через входные цепи поступает на резонатор, с резонатора сигнал через детектор подается на индикаторное устройство (гальванометр). Для повышения чувствительности в некоторых частотомерах применяются усилители. Оператор настраивает резонатор по максимальному показанию индикатора и по лимбу настройки отсчитывает частоту. Их назначение - настройка, обслуживание, контроль работы приемопередающих устройств, измерение несущей частоты модулированных сигналов.

Конденсаторные частотомеры

Электронные конденсаторные частотомеры применяются для измерения частот в диапазоне от 10 до 1000Гц. Принцип таких частотомеров основывается на попеременном заряде конденсаторов от батареи с последующим его разрядом через магнитоэлектрический механизм. Этот процесс осуществляется с частотой, равной измеряемой частоте, поскольку переключение производится под воздействием самого исследуемого напряжения. За время одного цикла через магнитоэлектрический механизм будет протекать заряд Q = CU, следовательно, средний ток, протекающий через индикатор, будет равен I_ср = Qf_x = CUfx. Таким образом, показания магнитоэлектрического амперметра оказывается пропорциональны измеряемой частоте. Основная приведенная погрешность таких частотомеров лежит в пределах 2-3%. Их назначение - настройка и обслуживание низкочастотной аппаратуры

Аналоговые стрелочные частотомеры

Аналоговые частотомеры по применяемому измерительному механизму бывают электромагнитной, электродинамической и магнитоэлектрической систем. В основе работы их лежит использование частотозависимой цепи, модуль полного сопротивления которой зависит от частоты. Измерительным механизмом, как правило, является логометр, на одно плечо которого подается измеряемый сигнал через частотонезависимую цепь, а на другое - через частотозависимую, ротор логометра со стрелкой в результате взаимодействия магнитных потоков устанавливается в положение, зависящее от соотношений токов в обмотках. Бывают аналоговые частотомеры работающие на других принципах. Применяются для контроля сети электропитания.

Электронно-счетные частотомеры

Принцип действия электронно-счетных частотомеров (ЭСЧ) основан на подсчете количества импульсов, сформированных входными цепями из периодического сигнала произвольной формы, за определенный интервал времени. Интервал времени измерения также задается методом подсчета импульсов, взятых с внутреннего кварцевого генератора ЭСЧ или из внешнего источника (например стандарта частоты). Таким образом ЭСЧ является прибором сравнения, точность измерения которого зависит от точности эталонной частоты.

Принципы измерения частоты

Среди цифровых приборов частотно-временной группы электронно-счетные частотомеры (в дальнейшем цифровые частотомеры - ЦЧ) являются наиболее распространенными, что объясняется, их универсальностью, высокими метрологическими и эксплуатационными характеристиками.

В основу построения ЦЧ положены общие принципы, позволяющие реализовать ряд режимов работы прибора для измерения нескольких величин. Функционально полные ЦЧ позволяют измерять следующие величины: частоту, период, отношение двух частот (иногда выраженное в процентах), длительность импульса или интервала времени, задаваемого пользователем; предусматриваются также режим счета событий (импульсов) и использование ЦЧ как источника сигналов с известными (калиброванными) частотами. Режимы работы задаются и выбираются положением ряда переключателей (механических или электронных) и других органов управления. В более простых вариантах исполнения ЦЧ используются для измерения меньшего числа величин (например, одной или двух).

В любом режиме часть структуры ЦЧ остается неизменной и в ней происходит счет числа импульсов
, пропорционального измеряемой величине. Эти импульсы проходят через электронный ключ ЭК, находящийся в замкнутом состоянии, на счетчик импульсов СИ. Код числа, образующийся в СИ, поступает на цифровое отсчетное устройство ЦОУ. В состав ЦОУ входит многодекадный цифровой индикатор с перемещающейся, запятой и, как правило, индикатор с обозначением единиц измерения.

Время замкнутого состояния ЭК, называемое временем счета Т СЧ, определяется родом измеряемой величины, а его конкретное значение рядом соображений, о которых будет сказано ниже.

Структурная схема ЦЧ в этом режиме работы приведена на рис.1а.

Напряжение измеряемой частоты f x (рис.1б ) подается на вход формирующего устройства (ФУ), назначение которого - формирование сигнала стандартной формы при достаточно произвольной форме входного сигнала. Обычно в состав ФУ входят усилитель-ограничитель, обеспечивающий заданную амплитуду своего выходного сигнала, и формирователь для обеспечения малой длительности фронта и среза импульсов на выходе ФУ. Частота этих импульсов равна частоте входного сигнала (рис. 1в). Эти импульсы проходят через ЭК на СИ в течение времени счета Т с , которое задается генератором опорной частоты ГОЧ и делителем частоты ДЧ. Частота ГОЧ стабилизирована кварцевым резонатором. Необходимое Т с выбирается переключателем ВРЕМЯ СЧЕТА. При каждом запуске прибора на выходе ДЧ появляется один импульс (рис. 1в), под действием которого замыкается ЭК.

Число импульсов N x , прошедшее на СИ, определяется приближенной формулой

а значение измеряемой частоты


Поделиться