Полноценные коммутаторы l2 уровня. Каналы связи L2 и L3 VPN - Отличия физических и виртуальных каналов разного уровня

Бакалавр Радиотехники

инженер-стажер филиала ЗАО «Энвижн Груп» Энвижн-Сибирь

Магистрант СибГУТИ

Консультант: Марамзин Валерий Валентинович, Ведущий инженер-конструктор Направление сетей и систем передачи данных NVision Group

Аннотация:

В статье описаны элементы методики определения топологии сети на канальном и сетевом уровнях

This article describes the elements of methodology for determining of the network topology at the data link and network layers

Ключевые слова:

топология, протоколы

topology, protocols

УДК 004.722

В настоящее время каждая крупная компания располагает своей внутренней локальной сетевой инфраструктурой. Во внутреннюю сеть входят как непосредственно рабочие станции, так и любые другие сетевые устройства, попадающие под понятие «хост».

Хост (от англ. Host) - конечный узел в стеке протоколов TCP/IP . Чаще всего этими устройствами в сети являются маршрутизаторы и коммутаторы.

Чем крупнее компания, тем объемнее и разветвленней ее сеть, которая включает в себя как внутрисетевые ресурсы, так и прочие сервисы и вложенные структуры, которые необходимо постоянно обслуживать и наблюдать. Именно с целью качественного мониторинга сети, быстрой ликвидации неполадок и внештатных ситуаций, выявления непроходимостей канала и решения прочих проблем необходимо знать топологию сети.

Топология сети - конфигурация графа, вершинам которого соответствуют конечные узлы сети (компьютеры) и коммуникационное оборудование (маршрутизаторы, коммутаторы), а ребрам — физические или информационные связи между вершинами.

В большинстве случаев типом топологии является неполносвязное иерархическое дерево, когда от одного или нескольких корневых мощных серверов, маршрутизаторов, расходится вся паутина сети. И чем крупнее локальная сеть, тем сложнее ее обслуживать и детектировать неисправности в условиях отсутствия знаний ее архитектуры.

Разумеется, в настоящее время имеются некоторые готовые решения способные визуализировать граф сети с указанием всех входящих в нее узлов. В их число входят разные пакеты сетевого менеджмента, работающих в автоматическом режиме и не всегда корректно отображающих реальное состояние объектов.

Например, пакет HP OpenView Network Node Manager компании Hewlett-Packard и разного рода подобные ему продукты предоставляют информацию о топологии на уровне L3, но предоставляют не много сведений о подключении и отключении сетевых устройств. То есть для эффективного обнаружения узлов сети и существующих соединений между ними необходимо оперировать средствами определения топологии на уровне L2 работая в режиме обнаружения соединений на уровне коммутаторов и маршрутизаторов.

Существуют другие решения от конкретных крупных производителей сетевого оборудования, таких как Cisco Systems, Nortel Networks, разработавших собственные протоколы CDP, LLDP - стандарт для обслуживания сетей крупных предприятий. Но проблема заключена в следующем: зачастую многие сети реализованы на оборудовании разных производителей, подобранном по тем или иным причинам, параметрам или предпочтениям.

Следовательно, появляется необходимость разработать универсальный метод по определению топологии сетей, вне зависимости от поставщика оборудования и прочих условий, который использовал бы разветвленный алгоритм анализа сети и ее узлов, а также предоставлял бы результаты в упрощенном наглядном виде, например, строя граф связности сети.

Реализовать это можно следующим образом. Входными данными для алгоритма станут аутентификационные параметры одного из корневых устройств сети и его IP-адрес. С него и начнется сбор информации о каждом устройстве посредством последовательного SNMP-опроса, используя определенную последовательность действий.

Для начала необходимо установить, какие протоколы активны и поддерживаются конкретным устройством, на рассматриваемом устройстве. Первичный анализ должен заключать в себяпроверку активности протокола LLDP и CDP - наиболее простых путей обнаружения соседства между устройствами в сети. Link Layer Discovery Protocol (LLDP) — протокол канального уровня, позволяющий сетевым устройствам анонсировать в сеть информацию о себе и о своих возможностях, а также собирать эту информацию о соседних устройствах.

Cisco Discovery Protocol (CDP) - протокол канального уровня, разработанный компанией Cisco Systems, позволяющий обнаруживать подключённое (напрямую или через устройства первого уровня) сетевое оборудование Cisco, его название, версию IOS и IP-адреса.

Таким образом, если устройством поддерживается один из этих протоколов, алгоритм сразу же обращается к соответствующим разделам MIB-таблицы (Management Information Base), в которой находится вся информация о соседних устройствах, если они также анонсировали ее о себе. В нее входят IP-адреса, информация о портах, шасси и типах устройств.

Если же поддержка LLDP/CDP отсутствует, вторым шагом проверки станет SNMP-опрос локальной MIB текущего девайса на предмет получения информации об его активных интерфейсах и ARP-таблице.

При этом, в первую очередь процедура проверки запускается на коммутаторах. Используя ARP-таблицу (Address Resolution Protocol) коммутатора, алгоритм получит информацию о каждом подключенном устройстве в виде соответствия MAC-address ̶ IP-address ̶ interface ̶ TTL

Поиск соседних устройств должен осуществляться посредством последовательного unicast опроса по всем найденным в ARP таблице MAC адресам. Ответ на ARP-запрос от искомого устройства по MAC-адресу и фиксация интерфейса, с которого ответ получен, станет фактом обнаружения устройства в сети. Идентифицировав соседство, производим процедуру сопоставления MAC-адресов: если на интерфейс первого устройства приходит ответ на запрос по MAC-адресу второго устройства и наоборот, на интерфейс второго устройства приходит ответ по запросу первого MAC адреса, то это гарантированная линия связи между двумя узлами. В итоге информация о соседстве содержит не только линию связи между узлами, но и информацию об интерфейсах, через которые они соединены.

Определение соседства устройств по MAC-адресам

Далее алгоритм переключается на следующий коммутатор и повторяет процедуру проверки, оставив запись в log-файле об уже посещенных девайсах и их параметрах, таким образом пройдя последовательно каждый узел в сети.

При проектировании данного метода и разработке алгоритма, не следует выпускать из вида несколько условий корректной его работы:

  1. На устройствах должна быть обязательно включена поддержка SNMP протокола, предпочтительно версии 3.
  2. Алгоритм должен уметь отличить виртуальные интерфейсы от реальных и строить граф связности по реальным физическим соединениям.
Выполнив необходимые условия работы и реализовав такого рода алгоритм, в итоге будет разработан универсальный метод определения топологии сети, который можно будет использовать как просто для визуализации графа связности сети, так и включить как модуль в состав другого более сложного алгоритма по выявлению и устранению неисправностей на уровнях L2, L3

Библиографический список:


1. Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы (4-ое изд.) – СПб.: Питер, 2010. – 944с
2. Link Layer Discovery Protocol (LLDP). Режим доступа: http://xgu.ru/wiki/LLDP (дата обращения 12.03.2014)
3. Cisco Discovery Protocol (CDP) Режим доступа: http://ru.wikipedia.org/wiki/CDP (дата обращения 12.03.2014)

Рецензии:

13.03.2014, 21:09 Клинков Георгий Тодоров
Рецензия : Нужно иметь в виду и тот факт, что сетевая топология требует еффективной маршрутизаций и комутации данных, особенно по отношению технологии firewall’ов – Active-Active топологии, асимметричная маршрутизация Cisco MSFC и FWSM. Балансировка FWSM используя PBR или ECMP-маршрутизацию; NAC – расположение в топологии; архитектура IDS и IPS.

13.03.2014, 22:08 Назарова Ольга Петровна
Рецензия : Последний абзац представляет собой рекомендации. Нет вывода. Доработать.


17.03.2014, 9:44 Назарова Ольга Петровна
Рецензия : Рекомендуется к печати.

Это первая статья из серии «Сети для самых маленьких». Мы с Максимом aka Gluck долго думали с чего начать: маршрутизация, VLAN"ы, настройка оборудования. В итоге решили начать с вещи фундаментальной и, можно сказать, самой важной: планирование. Поскольку цикл рассчитан на совсем новичков, то и пройдём весь путь от начала до конца.

Предполагается, что вы, как минимум, читали о эталонной модели OSI, о стеке протоколов TCP/IP, знаете о типах существующих VLAN’ов, о наиболее популярном сейчас port-based VLAN и о IP адресах. Мы понимаем, что для новичков «OSI» и «TCP/IP» — это страшные слова. Но не переживайте, не для того, чтобы запугать вас, мы их используем. Это то, с чем вам придётся встречаться каждый день, поэтому в течение этого цикла мы постараемся раскрыть их смысл и отношение к реальности.

Начнём с постановки задачи. Есть некая фирма, занимающаяся, допустим, производством лифтов, идущих только вверх, и потому называется ООО «Лифт ми ап». Расположены они в старом здании на Арбате, и сгнившие провода, воткнутые в пожжёные и прожжёные коммутаторы времён 10Base-T не ожидают подключения новых серверов по гигабитным карточкам. Итак, у них катастрофическая потребность в сетевой инфраструктуре и денег куры не клюют, что даёт вам возможность безграничного выбора. Это чудесный сон любого инженера. А вы вчера выдержали собеседование, и в сложной борьбе по праву получили должность сетевого администратора. И теперь вы в ней первый и единственный в своём роде. Поздравляем! Что дальше?

Следует несколько конкретизировать ситуацию:

  1. В данный момент у компании есть два офиса: 200 квадратов на Арбате под рабочие места и серверную. Там представлены несколько провайдеров. Другой на Рублёвке.
  2. Есть четыре группы пользователей: бухгалтерия (Б), финансово-экономический отдел (ФЭО), производственно-технический отдел (ПТО), другие пользователи (Д). А так же есть сервера (С), которые вынесены в отдельную группу. Все группы разграничены и не имеют прямого доступа друг к другу.
  3. Пользователи групп С, Б и ФЭО будут только в офисе на Арбате, ПТО и Д будут в обоих офисах.

Прикинув количество пользователей, необходимые интерфейсы, каналы связи, вы готовите схему сети и IP-план.

При проектировании сети следует стараться придерживаться иерархической модели сети, которая имеет много достоинств по сравнению с “плоской сетью”:

  • упрощается понимание организации сети
  • модель подразумевает модульность, что означает простоту наращивания мощностей именно там, где необходимо
  • легче найти и изолировать проблему
  • повышенная отказоустойчивость за счет дублирования устройств и/или соединений
  • распределение функций по обеспечению работоспособности сети по различным устройствам.

Согласно этой модели, сеть разбивается на три логических уровня: ядро сети (Core layer: высокопроизводительные устройства, главное назначение — быстрый транспорт), уровень распространения (Distribution layer: обеспечивает применение политик безопасности, QoS, агрегацию и маршрутизацию в VLAN, определяет широковещательные домены), и уровень доступа (Access-layer: как правило, L2 свичи, назначение: подключение конечных устройств, маркирование трафика для QoS, защита от колец в сети (STP) и широковещательных штормов, обеспечение питания для PoE устройств).

В таких масштабах, как наш, роль каждого устройства размывается, однако логически разделить сеть можно.

Составим приблизительную схему:


На представленной схеме ядром (Core) будет маршрутизатор 2811, коммутатор 2960 отнесём к уровню распространения (Distribution), поскольку на нём агрегируются все VLAN в общий транк. Коммутаторы 2950 будут устройствами доступа (Access). К ним будут подключаться конечные пользователи, офисная техника, сервера.

Именовать устройства будем следующим образом: сокращённое название города (msk ) — географическое расположение (улица, здание) (arbat ) — роль устройства в сети + порядковый номер.

Соответственно их ролям и месту расположения выбираем hostname :

  • маршрутизатор 2811: msk-arbat-gw1 (gw=GateWay=шлюз);
  • коммутатор 2960: msk-arbat-dsw1 (dsw=Distribution switch);
  • коммутаторы 2950: msk-arbat-aswN, msk-rubl-asw1 (asw=Access switch).

Документация сети

Вся сеть должна быть строго документирована: от принципиальной схемы, до имени интерфейса.

Прежде, чем приступить к настройке, я бы хотел привести список необходимых документов и действий:

  • схемы сети L1, L2, L3 в соответствии с уровнями модели OSI (физический, канальный, сетевой) ;
  • план IP-адресации = IP-план ;
  • список VLAN ;
  • подписи (description ) интерфейсов ;
  • список устройств (для каждого следует указать: модель железки, установленная версия IOS, объем RAM\NVRAM, список интерфейсов);
  • метки на кабелях (откуда и куда идёт), в том числе на кабелях питания и заземления и устройствах;
  • единый регламент, определяющий все вышеприведённые параметры и другие.

Жирным выделено то, за чем мы будем следить в рамках программы-симулятора. Разумеется, все изменения сети нужно вносить в документацию и конфигурацию, чтобы они были в актуальном состоянии.

Говоря о метках/наклейках на кабели, мы имеем ввиду это:

На этой фотографии отлично видно, что промаркирован каждый кабель, значение каждого автомата на щитке в стойке, а также каждое устройство.

Подготовим нужные нам документы:

Список VLAN

Каждая группа будет выделена в отдельный влан. Таким образом мы ограничим широковещательные домены. Также введём специальный VLAN для управления устройствами. Номера VLAN c 4 по 100 зарезервированы для будущих нужд.

IP-план

Выделение подсетей в общем-то произвольное, соответствующее только числу узлов в этой локальной сети с учётом возможного роста. В данном примере все подсети имеют стандартную маску /24 (/24=255.255.255.0) — зачастую такие и используются в локальных сетях, но далеко не всегда. Советуем почитать о классах сетей . В дальнейшем мы обратимся и к бесклассовой адресации (cisco). Мы понимаем, что ссылки на технические статьи в википедии — это моветон, однако они дают хорошее определение, а мы попробуем в свою очередь перенести это на картину реального мира.

Под сетью Point-to-Point подразумеваем подключение одного маршрутизатора к другому в режиме точка-точка. Обычно берутся адреса с маской 30 (возвращаясь к теме бесклассовых сетей), то есть содержащие два адреса узла. Позже станет понятно, о чём идёт речь.

IP-план
IP-адрес Примечание VLAN
172.16.0.0/16
172.16.0.0/24 Серверная ферма 3
172.16.0.1 Шлюз
172.16.0.2 Web
172.16.0.3 File
172.16.0.4 Mail
172.16.0.5 — 172.16.0.254 Зарезервировано
172.16.1.0/24 Управление 2
172.16.1.1 Шлюз
172.16.1.2 msk-arbat-dsw1
172.16.1.3 msk-arbat-asw1
172.16.1.4 msk-arbat-asw2
172.16.1.5 msk-arbat-asw3
172.16.1.6 msk-rubl-aswl
172.16.1.6 — 172.16.1.254 Зарезервировано
172.16.2.0/24 Сеть Point-to-Point
172.16.2.1 Шлюз
172.16.2.2 — 172.16.2.254 Зарезервировано
172.16.3.0/24 ПТО 101
172.16.3.1 Шлюз
172.16.3.2 — 172.16.3.254 Пул для пользователей
172.16.4.0/24 ФЭО 102
172.16.4.1 Шлюз
172.16.4.2 — 172.16.4.254 Пул для пользователей
172.16.5.0/24 Бухгалтерия 103
172.16.5.1 Шлюз
172.16.5.2 — 172.16.5.254 Пул для пользователей
172.16.6.0/24 Другие пользователи 104
172.16.6.1 Шлюз
172.16.6.2 — 172.16.6.254 Пул для пользователей

План подключения оборудования по портам

Разумеется, сейчас есть коммутаторы с кучей портов 1Gb Ethernet, есть коммутаторы с 10G, на продвинутых операторских железках, стоящих немалые тысячи долларов есть 40Gb, в разработке находится 100Gb (а по слухам уже даже есть такие платы, вышедшие в промышленное производство). Соответственно, вы можете выбирать в реальном мире коммутаторы и маршрутизаторы согласно вашим потребностям, не забывая про бюджет. В частности гигабитный свич сейчас можно купить незадорого (20-30 тысяч) и это с запасом на будущее (если вы не провайдер, конечно). Маршрутизатор с гигабитными портами стоит уже ощутимо дороже, чем со 100Mbps портами, однако оно того стоит, потому что FE-модели (100Mbps FastEthernet), устарели и их пропускная способность очень невысока.

Но в программах эмуляторах/симуляторах, которые мы будем использовать, к сожалению, есть только простенькие модели оборудования, поэтому при моделировании сети будем отталкиваться от того, что имеем: маршрутизатор cisco2811, коммутаторы cisco2960 и 2950.

Имя устройства Порт Название VLAN
Access Trunk
msk-arbat-gw1 FE0/1 UpLink
FE0/0 msk-arbat-dsw1 2,3,101,102,103,104
msk-arbat-dsw1 FE0/24 msk-arbat-gw1 2,3,101,102,103,104
GE1/1 msk-arbat-asw1 2,3
GE1/2 msk-arbat-asw3 2,101,102,103,104
FE0/1 msk-rubl-asw1 2,101,104
msk-arbat-asw1 GE1/1 msk-arbat-dsw1 2,3
GE1/2 msk-arbat-asw2 2,3
FE0/1 Web-server 3
FE0/2 File-server 3
msk-arbat-asw2 GE1/1 msk-arbat-asw1 2,3
FE0/1 Mail-Server 3
msk-arbat-asw3 GE1/1 msk-arbat-dsw1 2,101,102,103,104
FE0/1-FE0/5 PTO 101
FE0/6-FE0/10 FEO 102
FE0/11-FE0/15 Accounting 103
FE0/16-FE0/24 Other 104
msk-rubl-asw1 FE0/24 msk-arbat-dsw1 2,101,104
FE0/1-FE0/15 PTO 101
FE0/20 administrator 104

Почему именно так распределены VLAN"ы, мы объясним в следующих частях.

Схемы сети

На основании этих данных можно составить все три схемы сети на этом этапе. Для этого можно воспользоваться Microsoft Visio, каким-либо бесплатным приложением, но с привязкой к своему формату, или редакторами графики (можно и от руки, но это будет сложно держать в актуальном состоянии:)).

Не пропаганды опен сорса для, а разнообразия средств ради, воспользуемся Dia. Я считаю его одним из лучших приложений для работы со схемами под Linux. Есть версия для Виндоус, но, к сожалению, совместимости в визио никакой.

L1

То есть на схеме L1 мы отражаем физические устройства сети с номерами портов: что куда подключено.


L2

На схеме L2 мы указываем наши VLAN’ы.


L3

В нашем примере схема третьего уровня получилась довольно бесполезная и не очень наглядная, из-за наличия только одного маршрутизирующего устройства. Но со временем она обрастёт подробностями.


Как видите, информация в документах избыточна. Например, номера VLAN повторяются и на схеме и в плане по портам. Тут как бы кто на что горазд. Как вам удобнее, так и делайте. Такая избыточность затрудняет обновление в случае изменения конфигурации, потому что нужно исправиться сразу в нескольких местах, но с другой стороны, облегчает понимание.

К этой первой статье мы не раз ещё вернёмся в будущем, равно как и вам придётся всегда возвращаться к тому, что вы изначально напланировали. Собственно задание для тех, кто пока только начинает учиться и готов приложить для этого усилия: много читать про вланы, ip-адресацию, найти программы Packet Tracer и GNS3. Что касается фундаментальных теоретических знаний, то советуем начать читать Cisco press. Это то, что вам совершенно точно понадобится знать. В следующей части всё будет уже по-взрослому, с видео, мы будем учиться подключаться к оборудованию, разбираться с интерфейсом и расскажем, что делать нерадивому админу, забывшему пароль.

Оригинал статьи:

Теги

Cisco

Купить коммутатор L2

Коммутаторы - важнейшая составляющая современных сетей связи. В этом разделе каталога представлены как управляемые коммутаторы 2 уровня, Gigabit Ethernet, так и неуправляемые коммутаторы Fast Ethernet . В зависимости от решаемых задач подбирают коммутаторы уровня доступа (2 уровня), агрегации и ядра, либо коммутаторы с множеством портов и высокопроизводительной шиной.

Принцип действия устройств состоит в том, чтобы хранить данные о соответствии их портов IP- или MAC-адресу подключенного к коммутатору девайса.

Схема организации сети

Для достижения высоких скоростей широко применяется технология передачи информации с помощью коммутатора Gigabit Ethernet (GE) и 10 Gigabit Ethernet (10GE). Передача информация на больших скоростях, особенно в сетях крупного масштаба, подразумевает выбор такой топологии сети, которая позволяет гибко осуществлять распределение высокоскоростных потоков.

Многоуровневый подход к созданию сети, используя управляемые коммутаторы 2 уровня, оптимально решает подобные задачи, так как подразумевает создание архитектуры сети в виде иерархических уровней и позволяет:

  • масштабировать сеть на каждом уровне, не затрагивая всю сеть;
  • добавлять различные уровни;
  • расширять функциональные возможности сети по мере необходимости;
  • минимизировать ресурсные затраты для поиска и устранения неисправностей;
  • оперативно решать проблемы с перегрузкой сети.

Основными приложениями сети на базе предлагаемого оборудования являются услуги Triple Play (IPTV, VoIP, Data), VPN, реализуемые через универсальный транспорт трафика различного вида - IP сеть.

Управляемые коммутаторы 2 уровня технологии Gigabit Ethernet позволяют создавать архитектуру сети, состоящую из трех уровней иерархии:

  1. Уровень ядра (Core Layer) . Образуется коммутаторами уровня ядра. Связь между устройствами осуществляется по оптоволоконному кабелю по схеме «кольцо с резервированием». Коммутаторы уровня ядра поддерживают высокую пропускную способность сети и позволяют организовать передачу потока со скоростью 10Gigabit между крупными узлами населенных пунктов, например, между городскими районами. Переход на следующий уровень иерархии - уровень распределения, осуществляется по оптическому каналу на скорости 10Gigabit через оптические порты XFP. Особенностью данных устройств являются широкая полоса пропускания и обработка пакетов от уровня L2 до L4.
  2. Уровень распределения (Distribution Layer) . Образуется пограничными коммутаторами. Связь осуществляется по оптоволоконному кабелю по схеме «кольцо с резервированием». Данный уровень позволяет организовать передачу потока со скоростью 10Gigabit между пунктами скопления пользователей, например, между жилыми массивами или группой зданий. Подключение коммутаторов уровня распределения к нижестоящему уровню - уровню доступа осуществляется по оптическим каналам 1Gigabit Ethernet через оптические порты SFP. Особенности данных устройств: широкая полоса пропускания и обработка пакетов от уровня L2 до уровня L4, а так же поддержка протокола EISA, позволяющая в течении 10мсек восстанавливать связь при разрыве оптического кольца.
  3. Уровень доступа (Access Layer) . Его образуют управляемые коммутаторы 2 уровня. Связь осуществляется по оптоволоконному кабелю на скоростях 1Gigabit. Коммутаторы уровня доступа можно разбить на две группы: только с электрическим интерфейсом и имеющие еще оптические порты SFP для создания кольца на своем уровне и подключения к уровню распределения.

С доброй улыбкой теперь вспоминается, как человечество с тревогой ожидало в 2000 году конца света. Тогда этого не случилось, но зато произошло совсем другое событие и тоже очень значимое.

Исторически, в то время мир вошел в настоящую компьютерную революцию v. 3.0. - старт облачных технологий распределенного хранения и обработки данных . Причем, если предыдущей «второй революцией» был массовый переход к технологиям «клиент-сервер» в 80-х годах, то первой можно считать начало одновременной работы пользователей с использованием отдельных терминалов, подключенных к т.н. «мейнфреймам» (в 60-х прошлого столетия). Эти революционные перемены произошли мирно и незаметно для пользователей, но затронули весь мир бизнеса вместе с информационными технологиями.

При переносе IT-инфраструктуры на и удаленные ЦОД (центры обработки данных) ключевым вопросом сразу же становится организация надежных каналов связи от клиента . В Сети нередко встречаются предложения провайдеров: «физическая выделенная линия, оптоволокно», «канал L2», «VPN» и так далее… Попробуем разобраться, что за этим стоит на практике.

Каналы связи - физические и виртуальные

1. Организацией «физической линии» или «канала второго уровня, L2» принято называть услугу предоставления провайдером выделенного кабеля (медного или оптоволоконного), либо радиоканала между офисами и теми площадками, где развернуто оборудование дата-центров. Заказывая эту услугу, на практике скорее всего вы получите в аренду выделенный оптоволоконный канал. Это решение привлекательно тем, что за надежную связь отвечает провайдер (а в случае повреждения кабеля самостоятельно восстанавливает работоспособность канала). Однако, в реальной жизни кабель на всем протяжении не бывает цельным - он состоит из множества соединенных (сваренных) между собой фрагментов, что несколько снижает его надежность. На пути прокладки оптоволоконного кабеля провайдеру приходится применять усилители, разветвители, а на оконечных точках - модемы.

В маркетинговых материалах к уровню L2 (Data-Link) сетевой модели OSI или TCP/IP это решение относят условно - оно позволяет работать как бы на уровне коммутации фреймов Ethernet в LAN, не заботясь о многих проблемах маршрутизации пакетов на следующем, сетевом уровне IP. Есть, например, возможность продолжать использовать в клиентских виртуальных сетях свои, так называемые «частные», IP-адреса вместо зарегистрированных уникальных публичных адресов. Поскольку использовать частные IP-адреса в локальных сетях очень удобно, пользователям были выделены специальные диапазоны из основных классов адресации:

  • 10.0.0.0 - 10.255.255.255 в классе A (с маской 255.0.0.0 или /8 в альтернативном формате записи маски);
  • 100.64.0.0 - 100.127.255.255 в классе A (с маской 255.192.0.0 или /10);
  • 172.16.0.0 - 172.31.255.255 в классе B (с маской 255.240.0.0 или /12);
  • 192.168.0.0 - 192.168.255.255 в классе C (с маской 255.255.0.0 или /16).

Такие адреса выбираются пользователями самостоятельно для «внутреннего использования» и могут повторяться одновременно в тысячах клиентских сетей, поэтому пакеты данных с частными адресами в заголовке не маршрутизируются в Интернете - чтобы избежать путаницы. Для выхода в Интернет приходится применять NAT (или другое решение) на стороне клиента.

Примечание: NAT - Network Address Translation (механизм замены сетевых адресов транзитных пакетов в сетях TCP/IP, применяется для маршрутизации пакетов из локальной сети клиента в другие сети/Интернет и в обратном направлении - вовнутрь LAN клиента, к адресату).

У этого подхода (а мы говорим о выделенном канале) есть и очевидный недостаток - в случае переезда офиса клиента, могут быть серьезные сложности с подключением на новом месте и возможна потребность в смене провайдера.

Утверждение, что такой канал значительно безопаснее, лучше защищен от атак злоумышленников и ошибок низкоквалифицированного технического персонала при близком рассмотрении оказывается мифом. На практике проблемы безопасности чаще возникают (или создаются хакером умышленно) прямо на стороне клиента, при участии человеческого фактора.

2. Виртуальные каналы и построенные на них частные сети VPN (Virtual Private Network) распространены широко и позволяют решить большинство задач клиента.

Предоставление провайдером «L2 VPN» предполагает выбор из нескольких возможных услуг «второго уровня», L2:

VLAN - клиент получает виртуальную сеть между своими офисами, филиалами (в действительности, трафик клиента идет через активное оборудование провайдера, что ограничивает скорость);

Соединение «точка-точка» PWE3 (другими словами, «эмуляция сквозного псевдопровода» в сетях с коммутацией пакетов) позволяет передавать фреймы Ethernet между двумя узлами так, как если бы они были соединены кабелем напрямую. Для клиента в такой технологии существенно, что все переданные фреймы доставляются до удалённой точки без изменений. То же самое происходит и в обратном направлении. Это возможно благодаря тому, что фрейм клиента приходя на маршрутизатор провайдера далее инкапсулируется (добавляется) в блок данных вышестоящего уровня (пакет MPLS), а в конечной точке извлекается;


Примечание: PWE3 - Pseudo-Wire Emulation Edge to Edge (механизм, при котором с точки зрения пользователя, он получает выделенное соединение).

MPLS - MultiProtocol Label Switching (технология передачи данных, при которой пакетам присваиваются транспортные/сервисные метки и путь передачи пакетов данных в сетях определяется только на основании значения меток, независимо от среды передачи, используя любой протокол. Во время маршрутизации новые метки могут добавляться (при необходимости) либо удаляться, когда их функция завершилась. Содержимое пакетов при этом не анализируется и не изменяется).

VPLS - технология симуляции локальной сети с многоточечными соединениями. В этом случае сеть провайдера выглядит со стороны клиента подобной одному коммутатору, хранящему таблицу MAC-адресов сетевых устройств. Такой виртуальный «коммутатор» распределяет фрейм Ethernet пришедший из сети клиента, по назначению - для этого фрейм инкапсулируется в пакет MPLS, а после извлекается.


Примечание: VPLS - Virtual Private LAN Service (механизм, при котором с точки зрения пользователя, его разнесенные географически сети соединены виртуальными L2 соединениями).

MAC - Media Access Control (способ управления доступом к среде - уникальный 6-байтовый адрес-идентификатор сетевого устройства (или его интерфейсов) в сетях Ethernet).


3. В случае развертывания «L3 VPN» сеть провайдера в глазах клиента выглядит подобно одному маршрутизатору с несколькими интерфейсами. Поэтому, стык локальной сети клиента с сетью провайдера происходит на уровне L3 сетевой модели OSI или TCP/IP.

Публичные IP-адреса для точек стыка сетей могут определяться по согласованию с провайдером (принадлежать клиенту либо быть полученными от провайдера). IP-адреса настраиваются клиентом на своих маршрутизаторах с обеих сторон (частные - со стороны своей локальной сети, публичные - со стороны провайдера), дальнейшую маршрутизацию пакетов данных обеспечивает провайдер. Технически, для реализации такого решения используется MPLS (см. выше), а также технологии GRE и IPSec.


Примечание: GRE - Generic Routing Encapsulation (протокол тунеллирования, упаковки сетевых пакетов, который позволяет установить защищенное логическое соединение между двумя конечными точками - с помощью инкапсуляции протоколов на сетевом уровне L3).

IPSec - IP Security (набор протоколов защиты данных, которые передаются с помощью IP. Используется подтверждение подлинности, шифрование и проверка целостности пакетов).

Важно понимать, что современная сетевая инфраструктура построена так, что клиент видит только ту ее часть, которая определена договором. Выделенные ресурсы (виртуальные серверы, маршрутизаторы, хранилища оперативных данных и резервного копирования), а также работающие программы и содержимое памяти полностью изолированы от других пользователей. Несколько физических серверов могут согласованно и одновременно работать для одного клиента, с точки зрения которого они будут выглядеть одним мощным серверным пулом. И наоборот, на одном физическом сервере могут быть одновременно созданы множество виртуальных машин (каждая будет выглядеть для пользователя подобно отдельному компьютеру с операционной системой). Кроме стандартных, предлагаются индивидуальные решения, которые также соответствует принятым требованиям относительно безопасности обработки и хранения данных клиента.

При этом, конфигурация развернутой в облаке сети «уровня L3» позволяет масштабирование до практически неограниченных размеров (по такому принципу построен Интернет и крупные дата-центры). Протоколы динамической маршрутизации, например OSPF, и другие в облачных сетях L3, позволяют выбрать кратчайшие пути маршрутизации пакетов данных, отправлять пакеты одновременно несколькими путями для наилучшей загрузки и расширения пропускной способности каналов.

В то же время, есть возможность развернуть виртуальную сеть и на «уровне L2», что типично для небольших дата-центров и устаревших (либо узко-специфических) приложений клиента. В некоторых таких случаях, применяют даже технологию «L2 over L3», чтобы обеспечить совместимость сетей и работоспособность приложений.

Подведем итоги

На сегодняшний день задачи пользователя/клиента в большинстве случаев могут быть эффективно решены путём организации виртуальных частных сетей VPN c использованием технологий GRE и IPSec для безопасности.

Нет особого смысла противопоставлять L2 и L3, равно как нет смысла считать предложение канала L2 лучшим решением для построения надёжной коммуникации в своей сети, панацеей. Современные каналы связи и оборудование провайдеров позволяют пропускать громадное количество информации, а многие выделенные каналы, арендуемые пользователями, на самом деле - даже недогружены. Разумно использовать L2 только в особенных случаях, когда этого требует специфика задачи, учитывать ограничения возможности будущего расширения такой сети и проконсультироваться со специалистом. С другой стороны, виртуальные сети L3 VPN, при прочих равных условиях, более универсальны и просты в эксплуатации.

В этом обзоре кратко перечислены современные типовые решения, которые используют при переносе локальной IT-инфраструктуры в удаленные центры обработки данных. Каждое из них имеет своего потребителя, достоинства и недостатки, правильность выбора решения зависит от конкретной задачи.

В реальной жизни, оба уровня сетевой модели L2 и L3 работают вместе, каждый отвечает за свою задачу и противопоставляя их в рекламе, провайдеры откровенно лукавят.

    L3-коммутатор способен выполнить только чистый IP-роутинг - он не умеет NAT, route-map или traffic-shape, подсчет трафика. Коммутаторы не способны работать с VPN-туннелями (Site-to-site VPN, Remote Access VPN, DMVPN), не могут шифровать трафик или выполнять функции statefull firewall, нет возможности использовать в качестве сервера телефонии (цифровой АТС).

    Главное достоинство коммутатора 3го уровня - быстрая маршрутизация трафика разных L3-сегментов между собой,чаще всего это внутренний трафик без выхода в сеть Интернет. .

    Как раз выход в Интернет вам обеспечит маршрутизатор. NAT настраивается также на маршрутизаторе.

    Маршрутизация большого количества локальных сетей практически невозможна на маршрутизаторе, высока вероятность деградации сервиса при использовании QoS, ACL NBAR и других функций, приводящих к анализу приходящего на интерфейсы трафика. Скорее всего, проблемы начнутся при превышении скорости локального трафика более, чем до 100Мбит/с (в зависимости от модели конкретного маршрутизатора). Коммутатор, наоборот, с легкостью справится с этой задачей.

    Основная причина в том, что коммутатор маршрутизирует трафик на основе CEF-таблиц .

    Cisco Express Forwarding (CEF ) - технология высокоскоростной маршрутизации/коммутации пакетов, использующаяся в маршрутизаторах и коммутаторах третьего уровня фирмы Cisco Systems, и позволяющая добиться более быстрой и эффективной обработки транзитного трафика.

    Маршрутизатор тоже может использовать CEF, но если вы используете на маршрутизаторе функции, приводящие к анализу всего трафика, то трафик пойдет уже через процессор. Сравните в таблице производительности маршрутизаторов, приведенную в самом начале, какая производительность у маршрутизатора при "Fast\CEF switching" (с помощью таблиц) и какая при "Process switching" (решение о маршрутизации принимается процессором).

    Итого, маршрутизатор отличается от L3-коммутатора тем, что маршрутизатор умеет очень гибко управлять трафиком, но обладает сравнительно низкой производительностью при работе внутри локальной сети, L3-коммутатор же наоборот обладает высокой производительностью, но не может влиять на трафик, обрабатывать его.

    Про L2-коммутаторы можно сказать, что они применяются только на уровне доступа, обеспечивая подключение конечного пользовательского (не сетевого оборудования)

    Когда использовать L2-свитчи, а когда L3-коммутаторы?

    В небольшомм бренче до 10 человек достаточно поставить один маршрутизатор со встроенным свитчом (серии 800) или установленным модулем модулем расширения ESW (серии 1800,1900)или ESG.

    В офисе на 50 человек можно установить один маршрутизатор средней производительности и один 48-портовый L2-коммутатор (возможно два 24-портовых).

    В филиале до 200 человек будем использовать маршрутизатор и несколько коммутаторов второго уровня. Важно понимать, что если вы разделили сеть на сегменты на уровне IP-адресов на несколько подсетей и производите роутинг между сетями на маршрутизаторе, то вам совершенно точно обеспечена высокая нагрузка на процессор, что вызовет недостаток производительности и жалобы конечных пользователей на дропание пакетов. Если большинство пользователи общаются только с компьютерами, серверами, принтерами и другими сетевыми устройствами только внутри своего L3-сегмента, и покидают пределы этого адресного пространства только для выхода в интернет, то данный дизайн сети будет удовлетворительным. При расширении сети, количества отделов, внутри которых трафик не должен вылезать наружу этого отдела, если разные отделы (в нашем случае это подсети или сегменты сети) вынуждены вести обмен данными между собой, то производительности маршрутизатора уже не хватит.

    В таком крупном офисе (свыше 200 сотрудников) становится обязательным покупка высокопроизводительного коммутатора 3третьего уровня. В его задачи будет входить поддержка всех "шлюзов по умолчанию" локальных сегментов. Связь между этим коммутатором и хостами будет осуществляться через логические сетевые интерфейсы (interface VLAN или SVI). Маршрутизатор достаточно будет иметь всего два подключения - в интернет и к вашему L3-коммутатору . Пользователей же необходимо будет подключать через L2-коммутаторы , подключенные звездой или кольцом к L3-коммутатору с помощью гигабитных соединений, таким образом нам пригодится L3-коммутатор с Гигабитными портами. Таким образом, центром сети станет как раз L3-коммутатор , который будет отвечать за функции ядра и распределения одновременно, L2-коммутаторы на уровне доступа и маршрутизатор в качестве шлюза для подключения к Интернету или для связи с удаленными офисами посредством туннелей.

    В действительно же БОЛЬШИХ кампусных сетях численностью более 500 человек и с высокими требованиями к производительности и функциональности может возникнуть необходимость даже на уровень доступа для подключения пользователей ставить L3-коммутаторы. Это может быть вызвано следующими причинами:

    Недостаточная производительность L2 коммутаторов (особенно с гигабитными портами и при использовании в качестве серверных ферм)

    Недостаточное кол-во поддерживаемых active vlan (255 против 1000 у L3)

    Отсутствие функционала Q-n-Q

    Недостаточное кол-во поддерживаемых записей ACL (у 2960 - 512, у 3560 - 2000)

    Ограниченные возможности работы с мультикастами

    Недостаточные возможности QoS на L2-коммутаторах

    Архитектура сети "L3-access" - т.е. точки маршрутизации локальных подсетей выносятся на уровень доступа, а наверх на уровень распределения отдаются уже суммированные маршруты...

    Отсутствие L2 и STP на уровне распределения.

Поделиться