Схема передачи информации по различным техническим каналам. Передача информации

Схема передачи информации. Канал передачи информации. Скорость передачи информации.

Существуют три вида информационных процессов: хранение, передача, обработка.

Хранение информации:

· Носители информации.

· Виды памяти.

· Хранилища информации.

· Основные свойства хранилищ информации.

С хранением информации связаны следующие понятия: носитель информации (память), внутренняя память, внешняя память, хранилище информации.

Носитель информации – это физическая среда, непосредственно хранящая информацию. Память человека можно назвать оперативной памятью. Заученные знания воспроизводятся человеком мгновенно. Собственную память мы еще можем назвать внутренней памятью, поскольку ее носитель – мозг – находится внутри нас.

Все прочие виды носителей информации можно назвать внешними (по отношению к человеку): дерево, папирус, бумага и т.д. Хранилище информации - это определенным образом организованная информация на внешних носителях, предназначенная для длительного хранения и постоянного использования (например, архивы документов, библиотеки, картотеки). Основной информационной единицей хранилища является определенный физический документ: анкета, книга и др. Под организацией хранилища понимается наличие определенной структуры, т.е. упорядоченность, классификация хранимых документов для удобства работы с ними. Основные свойства хранилища информации: объем хранимой информации, надежность хранения, время доступа (т.е. время поиска нужных сведений), наличие защиты информации.

Информацию, хранимую на устройствах компьютерной памяти, принято называть данными. Организованные хранилища данных на устройствах внешней памяти компьютера принято называть базами и банками данных.

Обработка информации:

· Общая схема процесса обработки информации.

· Постановка задачи обработки.

· Исполнитель обработки.

· Алгоритм обработки.

· Типовые задачи обработки информации.

Схема обработки информации:

Исходная информация – исполнитель обработки – итоговая информация.

В процессе обработки информации решается некоторая информационная задача, которая предварительно может быть поставлена в традиционной форме: дан некоторый набор исходных данных, требуется получить некоторые результаты. Сам процесс перехода от исходных данных к результату и есть процесс обработки. Объект или субъект, осуществляющий обработку, называют исполнителем обработки.

Для успешного выполнения обработки информации исполнителю (человеку или устройству) должен быть известен алгоритм обработки, т.е. последовательность действий, которую нужно выполнить, чтобы достичь нужного результата.

Различают два типа обработки информации. Первый тип обработки: обработка, связанная с получением новой информации, нового содержания знаний (решение математических задач, анализ ситуации и др.). Второй тип обработки: обработка, связанная с изменением формы, но не изменяющая содержания (например, перевод текста с одного языка на другой).

Важным видом обработки информации является кодирование – преобразование информации в символьную форму, удобную для ее хранения, передачи, обработки. Кодирование активно используется в технических средствах работы с информацией (телеграф, радио, компьютеры). Другой вид обработки информации – структурирование данных (внесение определенного порядка в хранилище информации, классификация, каталогизация данных).

Ещё один вид обработки информации – поиск в некотором хранилище информации нужных данных, удовлетворяющих определенным условиям поиска (запросу). Алгоритм поиска зависит от способа организации информации.

Передача информации:

· Источник и приемник информации.

· Информационные каналы.

· Роль органов чувств в процессе восприятия информации человеком.

· Структура технических систем связи.

· Что такое кодирование и декодирование.

· Понятие шума; приемы защиты от шума.

· Скорость передачи информации и пропускная способность канала.

Схема передачи информации:

Источник информации – информационный канал – приемник информации.

Информация представляется и передается в форме последовательности сигналов, символов. От источника к приёмнику сообщение передается через некоторую материальную среду. Если в процессе передачи используются технические средства связи, то их называют каналами передачи информации (информационными каналами). К ним относятся телефон, радио, ТВ. Органы чувств человека исполняют роль биологических информационных каналов.

Процесс передачи информации по техническим каналам связи проходит по следующей схеме (по Шеннону):

Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам: плохое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же каналам. Для защиты от шума применяются разные способы, например, применение разного рода фильтров, отделяющих полезный сигнал от шума.

Клодом Шенноном была разработана специальная теория кодирования, дающая методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части информации при передаче может быть компенсирована. Однако нельзя делать избыточность слишком большой. Это приведёт к задержкам и подорожанию связи.

При обсуждении темы об измерении скорости передачи информации можно привлечь прием аналогии. Аналог – процесс перекачки воды по водопроводным трубам. Здесь каналом передачи воды являются трубы. Интенсивность (скорость) этого процесса характеризуется расходом воды, т.е. количеством литров, перекачиваемых за единицу времени. В процессе передачи информации каналами являются технические линии связи. По аналогии с водопроводом можно говорить об информационном потоке, передаваемом по каналам. Скорость передачи информации – это информационный объем сообщения, передаваемого в единицу времени. Поэтому единицы измерения скорости информационного потока: бит/с, байт/с и др. информационный процесс передача канал

Еще одно понятие – пропускная способность информационных каналов – тоже может быть объяснено с помощью «водопроводной» аналогии. Увеличить расход воды через трубы можно путем увеличения давления. Но этот путь не бесконечен. При слишком большом давлении трубу может разорвать. Поэтому предельный расход воды, который можно назвать пропускной способностью водопровода. Аналогичный предел скорости передачи данных имеют и технические линии информационной связи. Причины этому также носят физический характер.

1. Классификация и характеристики канала связи
Канал связи – это совокупность средств, предназначенных для передачи сигналов (сообщений).
Для анализа информационных процессов в канале связи можно использовать его обобщенную схему, приведенную на рис. 1.

ИИ
ЛС
П
ПИ
П

На рис. 1 приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f – помеха; ЛС – линия связи;ИИ, ПИ – источник и приемник информации; П – преобразователи (кодирование, модуляция, декодирование, демодуляция).
Существуют различные типы каналов, которые можно классифицировать по различным признакам:
1. По типу линий связи: проводные; кабельные; оптико-волоконные;
линии электропередачи; радиоканалы и т.д.
2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).
3. По помехозащищенности: каналы без помех; с помехами.
Каналы связи характеризуются:
1. Емкость канала определяется как произведениевремени использования канала T к, ширины спектра частот, пропускаемых каналом F к и динамического диапазона D к . , который характеризует способность канала передавать различные уровни сигналов

V к = T к F к D к. (1)
Условие согласования сигнала с каналом:
V c £ V k ; T c £ T k ; F c £ F k ; V c £ V k ; D c £ D k .
2.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.
3.
4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).
Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.
Канал связи образно можно сравнивать с дорогами. Узкие дороги – малая пропускная способность, но дешево. Широкие дороги – хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом.
Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.
Проводные:
1. Проводные – витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.
2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.
3. Оптико-волоконная. Скорость передачи 1 Гбит/с.
В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).
Радиолинии:
1. Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.
2. Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.
3. Спутниковая связь . Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.
2. Пропускная способность дискретного канала связи
Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов .
Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.
При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле
I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X) , (2)
где: I (Y, X) – взаимная информация, т.е.количество информации, содержащееся в Y относительно X ; H(X) – энтропия источника сообщений; H (X/Y) – условная энтропия, определяющая потерю информации на один символ, связанную с наличием помех и искажений.
При передаче сообщения X T длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетом симметрии взаимного количества информации равно:
I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n . (4)
Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.
Пропускная способность дискретного канала связи
. (5)
Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x) .
Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: , , , .
2.1 Дискретный канал связи без помех
Если помехи в канале связи отсутствуют, то входные и выходные сигналы канала связаны однозначной, функциональной зависимостью.
При этом условная энтропия равна нулю, а безусловные энтропии источника и приемника равны, т.е. среднее количество информации в принятом символе относительно переданного равно
I (X, Y) = H(X) = H(Y); H (X/Y) = 0.
Если Х Т – количество символов за время T , то скорость передачи информации для дискретного канала связи без помех равна
(6)
где V = 1/ – средняя скорость передачи одного символа.
Пропускная способность для дискретного канала связи без помех
(7)
Т.к. максимальная энтропия соответствует для равновероятных символов, то пропускная способность для равномерного распределения и статистической независимости передаваемых символов равна:
. (8)
Первая теорема Шеннона для канала:Если поток информации, вырабатываемый источником, достаточно близок к пропускной способности канала связи, т.е.
, где - сколь угодно малая величина,
то всегда можно найти такой способ кодирования, который обеспечит передачу всех сообщений источника, причем скорость передачи информации будет весьма близкой к пропускной способности канала.
Теорема не отвечает на вопрос, каким образом осуществлять кодирование.
Пример 1. Источник вырабатывает 3 сообщения с вероятностями:
p 1 = 0,1; p 2 = 0,2 и p 3 = 0,7.
Сообщения независимы и передаются равномерным двоичным кодом (m = 2 ) с длительностью символов, равной 1 мс. Определить скорость передачи информации по каналу связи без помех.
Решение: Энтропия источника равна

[бит/с].
Для передачи 3 сообщений равномерным кодом необходимо два разряда, при этом длительность кодовой комбинации равна 2t.
Средняя скорость передачи сигнала
V =1/2 t = 500 .
Скорость передачи информации
C = vH = 500×1,16 = 580 [бит/с].
2.2 Дискретный канал связи с помехами
Мы будем рассматривать дискретные каналы связи без памяти.
Каналом без памяти называется канал, в котором на каждый передаваемый символ сигнала, помехи воздействуют, не зависимо от того, какие сигналы передавались ранее. То есть помехи не создают дополнительные коррелятивные связи между символами. Название «без памяти» означает, что при очередной передаче канал как бы не помнит результатов предыдущих передач.
При наличии помехи среднее количество информации в принятом символе сообщении – Y , относительно переданного – X равно:
.
Для символа сообщения X T длительности T, состоящегоиз n элементарных символов среднее количество информации в принятом символе сообщении – Y T относительно переданного – X T равно:
I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n = 2320 бит/с
Пропускная способность непрерывного канала с помехами определяется по формуле

=2322 бит/с.
Докажем, что информационная емкость непрерывного канала без памяти с аддитивным гауссовым шумом при ограничении на пиковую мощность не больше информационной емкости такого же канала при той же величине ограничения на среднюю мощность.
Математическое ожидание для симметричного равномерного распределения

Средний квадрат для симметричного равномерного распределения

Дисперсия для симметричного равномерного распределения

При этом, для равномерно-распределенного процесса .
Дифференциальная энтропия сигнала с равномерным распределением
.
Разность дифференциальных энтропий нормального и равномерно распределенного процесса не зависит от величины дисперсии
= 0,3 бит/отсч.
Таким образом, пропускная способность и емкость канала связи для процесса с нормальным распределением выше, чем для равномерного.
Определим емкость (объем) канала связи
V k = T k C k = 10×60×2322 = 1,3932 Мбит.
Определим количество информации, которое может быть передано за 10 минут работы канала
10× 60× 2322=1,3932 Мбит.
Задачи

Используя ресурсы Интернет, найти ответы на вопросы:

Задание 1

1. Что представляет из себя процесс передачи информации?

Передача информации - физический процесс, посредством которого осуществляется перемещение информации в пространстве. Записали информацию на диск и перенесли в другую комнату. Данный процесс характеризуется наличием следующих компонентов:


2. Общая схема передачи информации

3. Перечислите известные вам каналы связи

Канал связи (англ. channel, data line ) - система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи ), представляет только физическую среду распространения сигналов, например, физическую линию связи.

По типу среды распространения каналы связи делятся на:

4. Что такое телекоммуникации и компьютерные телекоммуникации?

Телекоммуникации (греч. tele - вдаль, далеко и лат. communicatio - общение) - это передача и прием любой информации (звука, изображения, данных, текста) на расстояние по различным электромагнитным системам (кабельным и оптоволоконным каналам, радиоканалам и другим проводным и беспроводным каналам связи).

Телекоммуникационная сеть
- это система технических средств, посредством которой осуществляются телекоммуникации.

К телекоммуникационным сетям относятся:
1. Компьютерные сети (для передачи данных)
2. Телефонные сети (передача голосовой информации)
3. Радиосети (передача голосовой информации - широковещательные услуги)
4. Телевизионные сети (передача голоса и изображения - широковещательные услуги)

Компьютерные телекоммуникации - телекоммуникации, оконечными устройствами которых являются компьютеры.

Передача информации с компьютера на компьютер называется синхронной связью, а через промежуточную ЭВМ, позволяющую накапливать сообщения и передавать их на персональные компьютеры по мере запроса пользователем, - асинхронной.

Компьютерные телекоммуникации начинают внедряться в образование. В высшей школе их используют для координации научных исследований, оперативного обмена информацией между участниками проектов, обучения на расстоянии, проведения консультаций. В системе школьного образования - для повышения эффективности самостоятельной деятельности учащихся, связанной с разнообразными видами творческих работ, включая и учебную деятельность, на основе широкого использования исследовательских методов, свободного доступа к базам данных, обмена информацией с партнерами как внутри страны, так и за рубежом.

5. Что такое пропускная способность канала передачи информации?
Пропускная способность - метрическая характеристика , показывающая соотношение предельного количества проходящих единиц (информации , предметов, объёма) в единицу времени через канал, систему, узел.
В информатике определение пропускной способности обычно применяется к каналу связи и определяется максимальным количеством переданной/полученной информации за единицу времени.
Пропускная способность - один из важнейших с точки зрения пользователей факторов. Она оценивается количеством данных, которые сеть в пределе может передать за единицу времени от одного подсоединенного к ней устройства к другому.

Скорость передачи информации зависит в значительной степени от скорости её создания (производительности источника), способов кодирования и декодирования. Наибольшая возможная в данном канале скорость передачи информации называется его пропускной способностью. Пропускная способность канала, по определению, есть скорость передачи информации при использовании «наилучших» (оптимальных) для данного канала источника, кодера и декодера, поэтому она характеризует только канал.

Схематично процесс передачи информации показан на рисунке. При этом предполагается, что имеется источник и получатель информации. Сообщение от источника к получателю передается посредством канала связи (информационного канала).

Рис. 3. – Процесс передачи информации

В таком процессе информация представляется и передается в форме некоторой последовательности сигналов, символов, знаков. Например, при непосредственном разговоре между людьми происходит передача звуковых сигналов - речи, при чтении текста человек воспринимает буквы – графические символы. Передаваемая последовательность называется сообщением. От источника к приемнику сообщение передается через некоторую материальную среду (звук - акустические волны в атмосфере, изображение – световые электромагнитные волны). Если в процессе передачи используются технические средства связи, то их называют каналами передачи информации (информационными каналами). К ним относятся телефон, радио, телевидение.

Можно говорить о том, что органы чувств человека выполняют роль биологических информационных каналов. С их помощью информационное воздействие на человека доносится до памяти.

Клодом Шенноном , была предложена схема процесса передачи информации по техническим каналам связи, представленная на рисунке.

Рис. 4. – Процесс передачи информации по Шеннону

Работу такой схемы можно пояснить на процессе разговора по телефону. Источником информации является говорящий человек. Кодирующим устройством – микрофон телефонной трубки, с помощью которого звуковые волны (речь) преобразуются в электрические сигналы. Каналом связи является телефонная сеть (провода, коммутаторы телефонных узлов через которые проходит сигнал)). Декодирующим устройством является телефонная трубка (наушник) слушающего человека – приемник информации. Здесь пришедший электрический сигнал превращается в звук.

Связь, при которой передача производится в форме непрерывного электрического сигнала, называется аналоговой связью.

Под кодированием понимается любое преобразование информации, идущей от источника, в форму, пригодную для ее передачи по каналу связи.

В настоящее время широко используется цифровая связь, когда передаваемая информация кодируется в двоичную форму (0 и 1 - двоичные цифры), а затем декодируется в текст, изображение, звук. Цифровая связь является дискретной.

Термином "шум" называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам: плохое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же каналам. В таких случаях необходима защита от шума.

В первую очередь применяются технические способы защиты каналов связи от воздействия шумов. Например, использование экранного кабеля вместо "голого" провода; применение разного рода фильтров, отделяющих полезный сигнал от шума и пр.

Клодом Шенноном была разработана специальная теория кодирования, дающая методы борьбы с шумом. Одна из важным идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части информации при передаче может быть компенсирована.

Однако, нельзя делать избыточность слишком большой. Это приведет к задержкам и подорожанию связи. Теория кодирования К. Шеннона как раз и позволяет получить такой код, который будет оптимальным. При этом избыточность передаваемой информации будет минимально-возможной, а достоверность принятой информации - максимальной.

В современных системах цифровой связи часто применяется следующий прием борьбы с потерей информации при передаче. Все сообщение разбивается на порции - блоки. Для каждого блока вычисляется контрольная сумма (сумма двоичных цифр), которая передается вместе с данным блоком. В месте приема заново вычисляется контрольная сумма принятого блока, и если она не совпадает с первоначальной, то передача данного блока повторяется. Так будет происходить до тех пор, пока исходная и конечная контрольные суммы не совпадут.

Скорость передачи информации – это информационный объем сообщения, передаваемого в единицу времени. Единицы измерения скорости информационного потока: бит/с, байт/с и др.

Технические линии информационной связи (телефонные линии, радиосвязь, оптико-волоконный кабель) имеют предел скорости передачи данных, называемый пропускной способностью информационного канала . Ограничения на скорость передачи носят физический характер.

| 8 классы | Планирование уроков на учебный год | Работа в локальной сети компьютерного класса в режиме обмена файлами

Урок 2
Работа в локальной сети компьютерного класса в режиме обмена файлами

Передача информации по техническим каналам связи

Передача информации по техническим каналам связи

Схема Шеннона

Американский ученый, один из основателей теории информации, Клод Шеннон предложил схему процесса передачи информации по техническим каналам связи (рис. 1.3).

Рис. 1.3. Схема технической системы передачи информации

Работу такой схемы можно пояснить на знакомом всем процессе разговора по телефону. Источник информации - говорящий человек. Кодирующее устройство - микрофон телефонной трубки, с помощью которого звуковые волны (речь) преобразуются в электрические сигналы. Канал связи - телефонная сеть (провода, коммутаторы телефонных узлов, через которые проходит сигнал). Декодирующее устройство - телефонная трубка (наушник) слушающего человека - приемника информации. Здесь пришедший электрический сигнал превращается в звук.

Здесь передача информации производится в форме непрерывного электрического сигнала. Это аналоговая связь .

Кодирование и декодирование информации

Под кодированием понимается любое преобразование информации, идущей от источника, в форму, пригодную для ее передачи по каналу связи.

На заре эры радиосвязи применялся код азбуки Морзе . Текст преобразовывался в последовательность точек и тире (коротких и длинных сигналов) и передавался в эфир. Принимавший на слух такую передачу человек должен был суметь декодировать код обратно в текст. Еще раньше азбука Морзе использовалась в телеграфной связи. Передача информации с помощью азбуки Морзе - пример дискретной связи.

В настоящее время широко используется цифровая связь, когда передаваемая информация кодируется в двоичную форму (0 и 1 - двоичные цифры), а затем декодируется в текст, изображение, звук. Цифровая связь, очевидно, тоже является дискретной.

Шум и защита от шума. Теория кодирования Шеннона

Информация по каналам связи передается посредством сигналов различной физической природы: электрических, электромагнитных, световых, акустических . Информационное содержание сигнала заключается в значении или в изменении значения его физической величины (силы тока, яркости света и пр.). Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи прежде всего возникают по техническим причинам: плохое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемых по одним и тем же каналам. Часто, беседуя по телефону, мы слышим шум, треск, мешающие понять собеседника, или на наш разговор накладывается разговор других людей. В таких случаях необходима защита от шума.

В первую очередь применяются технические способы защиты каналов связи от воздействия шумов. Такие способы бывают самыми разными, иногда простыми, иногда очень сложными. Например, использование экранированного кабеля вместо «голого» провода; применение разного рода фильтров, отделяющих полезный сигнал от шума, и пр.

К. Шеннон разработал специальную теорию кодирования , дающую методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части информации при передаче может быть компенсирована. Например, если при разговоре по телефону вас плохо слышно, то, повторяя каждое слово дважды, вы имеете больше шансов на то, что собеседник поймет вас правильно.

Однако нельзя делать избыточность слишком большой. Это приведет к задержкам и удорожанию связи. Теория кодирования Шеннона как раз и позволяет получить такой код, который будет оптимальным. При этом избыточность передаваемой информации будет минимально возможной, а достоверность принятой информации - максимальной.

В современных системах цифровой связи часто применяется следующий прием борьбы с потерей информации при передаче. Все сообщение разбивается на порции - пакеты . Для каждого пакета вычисляется контрольная сумма (сумма двоичных цифр), которая передается вместе с данным пакетом. В месте приема заново вычисляется контрольная сумма принятого пакета, и если она не совпадает с первоначальной, то передача данного пакета повторяется. Так происходит до тех пор, пока исходная и конечная контрольные суммы не совпадут.

Коротко о главном

Любая техническая система передачи информации состоит из источника, приемника, устройств кодирования и декодирования и канала связи .

Под кодированием понимается преобразование информации, идущей от источника, в форму, пригодную для ее передачи по каналу связи. Декодирование - это обратное преобразование.

Шум - это помехи, приводящие к потере информации.

В теории кодирования разработаны методы представления передаваемой информации с целью уменьшения ее потерь под воздействием шума.

Вопросы и задания

1. Назовите основные элементы схемы передачи информации, предложенной К. Шенноном.

2. Что такое кодирование и декодирование при передаче информации?

3. Что такое шум? Каковы его последствия при передаче информации?

4. Какие существуют способы борьбы с шумом?

ЕК ЦОР: Часть 2, заключение, дополнение к главе 1, § 1.1. ЦОР № 1.

Слайд 2

Технические системы передачи информации

Из истории: первой технической системой передачи стал телеграф (1837 г.); затем был изобретен телефон (1876 г. американец Александр Белл); изобретение радио (1895 г. Русский инженер Александр Степанович Попов.1896 г. итальянский инженер Г. Маркони) в 20 веке появились телевидение и Интернет

Слайд 3

Модель передачи информации К. Шеннона

Все перечисленные способы передачи информационной связи основаны на передаче на расстояние физического (электрического или электромагнитного) сигнала и подчиняются некоторым общим законам. Исследованием этих законов занимается теория связи, возникшая в 1920-х годах. Математический аппарат теории связи – математическую теорию связи, разработал ученый Клод Шеннон.

Слайд 4

Модель передачи информации по техническим каналам связи

ШУМ КАНАЛ СВЯЗИ ЗАЩИТА от ШУМА КОДИРУЮЩЕЕ УСТРОЙСТВО ПРИЕМНИК ИНФОРМАЦИИ ДЕКОДИРУЮЩЕЕ УСТРОЙСТВО ИСТОЧНИК ИНФОРМАЦИИ

Слайд 5

Пример работы модели передачи информации по техническим каналам

КОДИРУЮЩЕЕ УСТРОЙСТВО МИКРОФОН КАНАЛ СВЯЗИ ДЕКОДИРУЮЩЕЕ УСТРОЙСТВО ПРИЕМНИК

Слайд 6

Кодирование информации

это любое преобразование информации, идущей от источника, в форму, пригодную для её передачи по каналу связи. Формы закодированного сигнала, передавае-мого по техническим каналам связи: электрический ток радиосигнал

Слайд 7

Современные компьютерные системы передачи информации – это компьютерные сети.

В компьютерных сетях кодирование – это процесс преобразования двоичного компьютерного кода в физический сигнал того типа, который передается по каналу связи, декодирование – это обратный процесс, преобразования передаваемого сигнала в компьютерный код.

Слайд 8

Задачи, решаемые разработчиками технических систем передачи информации:

как обеспечить наибольшую скорость передачи информации; как уменьшить потери информации при передаче. К. Шеннон был первым, взявшимся за решение этих задач и создавшим науку – теорию информации.

Слайд 10

зависит от его технической реализации. В компьютерных сетях используются следующие средства связи: телефонные линии (10÷100 Кбит/с); электрическая кабельная связь; оптоволоконная кабельная связь (10÷100 Мбит/с); радиосвязь (10÷100 Мбит/с).

Слайд 11

Скорость передачи информации

зависит не только от пропускной способности канала связи, но и от разрядности кодировки информации. Длину кода сообщения надо делать минимально возможной.

Слайд 12

Шум

Термином «шум» называют разного помехи, искажающие передаваемый сигнал и приводящие к потере информации. Технические причины возникновения помех: плохое качество линий связи; незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же каналам. Наличие шума приводит к потере информации

Слайд 13

Защита от шума

Шеннон разработал специальную теорию кодирования, дающую методы борьбы с шумом. Одна из важнейших идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. Избыточность кода – это многократное повторение передаваемых данных.

Поделиться