Схема организации локальной сети предприятия. Проводная локальная сеть (LAN)

В связи с большой площадью территории, большим количеством зданий, цехов, подразделений и пользователей (около 1500 пользователей) для повышения производительности, отказоустойчивости сети необходимо разделить ее на логически независимые объекты, которые будут объединены между собой узловыми сетевыми устройствами. В тоже время разделение большой сети на более мелкие обеспечит возможность более простого ее администрирования. Таким образом, топология ЛВС предприятия будет выполнена в виде иерархической звезды. В качестве технологии канального уровня будет использоваться семейство высокоскоростных версий Ethernet.

Для обеспечения разделения ответственности между коммутаторами будет использована типовая архитектура, состоящая из: коммутаторов уровня ядра сети, коммутаторов уровня распределения и уровня доступа. От коммутаторов, установленных на уровне ядра сети, требуется высокая производительность и отказоустойчивость. Так как именно от них будет зависеть работоспособность всей сети. Коммутаторы распределения будут расположены по территории предприятия, ближе к группам коммутаторов доступа, к которым уже и подключаются конечные пользователи ресурсов ЛВС. Непосредственно к коммутатору ядра сети подключаются коммутаторы серверных шкафов, которые обслуживают, так называемые SAN (Storage area network), локальные сети внутри серверных шкафов.

Предприятие разделено на 5 зон, каждая из которых будут обслуживаться от своего коммутатора уровня распределения. Зоны выбраны в зависимости от месторасположения и количества пользователей. Схема ЛВС предприятия отображена на рисунке 2.

Логически такая крупная сеть должна быть разделена на несколько сетей более мелкого размера. При такой реализации подходе повысится производительность сети, так как широковещательный и другой «сорный трафик» не будет распространяться по все сети, занимая пропускную способность сети. В случае возникновения сбоев в работе сети, таких как широковещательных шторм, из строя выйдет только небольшой логический фрагмент сети, проблему в котором можно будет выявить и исправить значительно быстрее. То есть в таком случае обеспечивается удобство администрирования сети. При проведении каких-либо работ по перестройки сети, можно будет это делать по частям, что упрощает работу сетевых администраторов и позволяет вывести из эксплуатации небольшое количество пользователей на время проведения работ.

Рисунок 2 - Топология ЛВС предприятия

Для разделения сети на будет использована технология virtual local area network (VLAN). На каждое подразделение, а иногда на группу более мелких подразделений, будет организована своя виртуальная сеть. Так же будут созданы несколько vlan-ов для соединения коммутаторов ядра сети и уровня распределения. В каждой такой сети будет использованы уникальные сетевые адреса. Виртуальные сети для размещения подразделений в свои уникальные vlanы будут использоваться порты коммутаторов уровней ядра и распределения. Это будет сделано в ходе конфигурирования активных сетевых устройств.

Как видно из схемы для связи коммутаторов ядра и распределения будут использоваться несколько логических каналов. Будет реализована топология ядра сети «звезда + кольцо». От коммутатора ядра звездой расходятся каналы до коммутаторов распределения, они выделены на схеме голубым цветом. Таким образом получается «звезда». Эти каналы будут выделены в отдельный vlan, который будет использоваться только для связи магистральных коммутаторов.

Желтым цветом выделены каналы, которые будут связывать магистральные коммутаторы в «кольцо». Ранее было недопустимо создание петель в сетях Ethernet. Но требования к надежности сети привели к тому что стали разрабатываться технологии, способные поддерживать избыточные связи в сети, для резервирования каналов. Ethernet Ring Protection Switching (ERPS) одна из технологий которые позволяют организовывать отказоустойчивые топологии сети. Выбрана была она, а не Rapid Spanning Tree Protocol (RSTP), за быстрое время восстановления работоспособности сети в случае выхода одного из каналов из строя. Для протокола RSTP время сходимости составляет менее 10 секунд, в то время как для ERPS - менее 50 миллисекунд. Это так же будет отдельный vlan, используемый только магистральными коммутаторами.

Для объединения всех виртуальных сетей и нахождения маршрутов между ними будет использована динамическая маршрутизация. А именно протокол Open Shortest Path First version 2 (OSPFv2). Каждый из магистральных коммутаторов будет иметь возможность работы на 3 уровне модели OSI, то есть будет являться коммутатором уровня L3. В домене протокола OSPF будет выделена одна магистральная зона - backbone. В ней будут находиться только маршрутизаторы (встроенные в коммутаторы L3), которые будут обмениваться между собой сведениями о подключенных к ним виртуальным сетям. В этом протоколе необходимо выделение корня домена OSPF - Designated root (DR), и необходимо наличие резервного корня - Backup designated root (BDR). В качестве DR будет использоваться коммутатор уровня ядра, в качестве BDR - один из коммутаторов уровня распределения.

Каждый коммутатор уровня доступа пользователей будет использоваться в своем конкретном vlanе, выделенном для него на коммутаторе уровня распределения. В некоторых случаях такие коммутаторы могут быть использованы для подключения к ним коммутаторов на меньшие количества портов, но для логики работы сети это не имеет значения.

Таким образом организуется производительная, отказоустойчивая и легко масштабируемая архитектура локальной вычислительной сети.

Рассмотрим типичный небольшой офис. Предположим, что в нем работают несколько менеджеров (пусть их будет три), секретарь, бухгалтер и директор. На каждом рабочем месте установлен компьютер, также в офисе есть один выделенный канал в интернет с постоянным реальным ip адресом (например 195.34.10.134) и доменное имя myoffice.ru.

Теперь определимся, что мы хотим сделать.

  • объединить все компьютеры в локальную сеть (LAN);
  • организовать печать со всех рабочих мест на сетевой принтер;
  • подключить и настроить Интернет - канал;
  • организовать доступ в Интернет со всех компьютеров локальной сети.;
  • защитить локальную сеть от внешних вторжений;
  • установить и настроить сетевые сервисы: WEB-сервер, почтовый сервер, файловый, FTP, прокси и т.д.;
  • организовать удаленный модемный доступ к офисной сети из дома с возможностью использования офисного интернет-канала

Теперь приступим к проектированию структуры сети.

Поставленую задачу построения простой локальной сети мы будем решать на базе стека (набора) протоколов TCP/IP.

Сначала выберем диапазон IP адресов для нашей локальной сети. Остановимся на зарезервированных для использования в частных сетях адресах: 192.168.0.0-192.168.255.255. Для нашей локальной сети используем адресацию 192.168.20.0/24, где "/24" - сокращенная форма записи маски подсети 255.255.255.0. В каждой такой сети (класса "С") может использоваться до 254 уникальных хостов, чего нам вполне достаточно. Постоянный ip адрес (195.34.10.134) в сети интернет нам по условию задачи предоставлен провайдером.

В простом случае наша сеть может иметь следующую топологию:

Как видно из рисунка 1, большая часть сетевых сервисов размещена на одном компьютере, который через один сетевой интерфейс подключен к сети интернет, через другой - к локальной сети офиса, а через модемное соединение - к домашнему компьютеру. Каждому сетевому интерфейсу этого компьютера соответствует свой ip адрес: 195.34.10.134 - в сети интернет, 192.168.20.1 - в локальной сети, 192.168.40.1 - при удаленном соединении. Таким образом этот компьютер выполняет роль и маршрутизатора и файерволла и серверов: web, почтового, базы данных и пр. (Маршрутизатор - в нашем случае играет роль шлюза в Интернет. Вы можете спросить: нафиг он нужен, чем занимается? Отвечу как чайник: маршрутзатор занимается маршрутизацией... пакетов между подсетями, но в нашем случае он будет просто "раздавать" Интернет всем компьютерам в нашей локальной сети). Но такая структура имеет недостатки: во-первых, опасно "класть все яйца в одну корзину" (такая сеть весьма уязвима для атак и не очень надежна - проигравший теряет все), во-вторых, в ней не оптимально распределяется нагрузка, а в-третьих, ее неудобно администрировать - любой сбой или неисправность основного сервера практически полностью парализует работу всей локальной сети. Несмотря на недостаки этого варианта, мы в дальнейшем в основном будем использовать именно его, т.к. мы здесь рассматриваем самые простые и дешевые решения для маленьких контор и дома. Следующие две схемы приведены лишь для ознакомления, и в них можно не вникать.

Теперь немного изменим топологию сети, чтобы устранить часть недостатков (см. рис.2).

Здесь маршрутизатор выполняет только роль шлюза в интернет и файерволла, а сетевые сервисы размещены внутри локальной сети, в идеале - каждый на отдельном компьютере. Теперь выход из строя одного сервера не парализует другие. Но в этой сетевой топологии тоже имеется недостаток: рабочие станции и серверы находятся в одном и том же сегменте сети, что потенциально снижает ее надежность и производительность.

Поэтому, может быть, будет лучше интернет-серверы выделить в отдельный сегмент (см. рис.3).

В этом случае локальная сеть находится в одном сегменте сети, а интернет-серверы - в другом.

Могут быть и другие топологии локальной сети, все зависит от конкретных целей и условий, но для упрощения задачи мы остановимся на первой сетевой топологии (Рис.1), несмотря на ее недостатки, т.к. для экспериментов - это не принципиально.

Теперь пришло время подумать на каком оборудовании и программном обеспечении (ПО) следует реализовать нашу простую локальную сеть. Конкретные реализации будут описаны в следующих статьях, здесь же затронем общие вопросы.

Прошло то время, когда руководство компаний могло не задумываться о легальности устанавливаемых программ. Сейчас нарушения в области авторских прав относятся к тяжким преступлениям, поэтому от греха подальше (с целью минимизации рисков) будем рассматривать только лицензионное программное обеспечение. Оптимизация затрат при переходе на лицензионные программы для маленьких организаций будут рассмотренны в отдельной статье 146УК (шутка:)))).

В качестве шлюза в Интернет можно использовать:

  • компьютер с Windows (дорогое решение);
  • компьютер с FreeBSD/Linux;
  • аппаратный роутер (самое простое и дешевое решение - от 50$).

От некоторых крутых гуру, работающих в крупных организациях, скорее всего услышите рекомендацию на сервер поставить MS Windows 2003 Server, на него поставить ISA (для организации Интернет доступа), почтовый сервер MS Exchange, на клиентские компьютеры поставить Windows XP Pro и завести их в домен, а 1С использовать в терминальном режиме.

В принципе это функционально оптимальный вариант... для крупных организаций, но мы то не монстры, мы - маленькая конторка на 3-10 ПК. Посчитайте по прайс-листу партнеров Microsoft во сколько тысяч (десятков тысяч) долларов вам обойдется такое решение. Поэтому в следующих статьях будут рассматриваться в основном дешевые варианты, где на сервере (шлюзе) будут использоваться бесплатные FreeBSD или Linux, а на клиентских машинах Windows XP HomeEdition (или Professional)... а то и Linux Ubuntu.

Московский Государственный Горный Университет

Кафедра Автоматизированных Систем Управления

Курсовой проект

по дисциплине «Сети ЭВМ и телекоммуникации»

на тему: «Проектирование локальной вычислительной сети»

Выполнил:

Ст. гр. АС-1-06

Юрьева Я.Г.

Проверил:

проф., д. т. н. Шек В.М.

Москва 2009

Введение

1 Задание на проектирование

2 Описание локально-вычислительной сети

3 Топология сети

4 Схема локальной сети

5 Эталонная модель OSI

6 Обоснование выбора технологии развертывания локальной сети

7 Сетевые протоколы

8 Аппаратное и программное обеспечение

9 Расчет характеристик сети

Список используемой литературы

Локальная вычислительная сеть (ЛВС) представляет собой коммуникационную систему, объединяющую компьютеры и периферийное оборудование на ограниченной территории, обычно не больше нескольких зданий или одного предприятия. В настоящее время ЛВС стала неотъемлемым атрибутом в любых вычислительных системах, имеющих более 1 компьютера.

Основные преимущества, обеспечиваемые локальной сетью – возможность совместной работы и быстрого обмена данными, централизованное хранение данных, разделяемый доступ к общим ресурсам, таким как принтеры, сеть Internet и другие.

Еще одной важнейшей функцией локальной сети является создание отказоустойчивых систем, продолжающих функционирование (пусть и не в полном объеме) при выходе из строя некоторых входящих в них элементов. В ЛВС отказоустойчивость обеспечивается путем избыточности, дублирования; а также гибкости работы отдельных входящих в сеть частей (компьютеров).

Конечной целью создания локальной сети на предприятии или в организации является повышение эффективности работы вычислительной системы в целом.

Построение надежной ЛВС, соответствующей предъявляемым требованиям по производительности и обладающей наименьшей стоимостью, требуется начинать с составления плана. В плане сеть разделяется на сегменты, подбирается подходящая топология и аппаратное обеспечение.

Топологию «шина» часто называют «линейной шиной» (linear bus). Данная топология относится к наиболее простым и широко распространенным топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети.

В сети с топологией «шина» (рис.1.) компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов.

Рис.1. Топология «Шина»

Данные в виде электрических сигналов передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах. Причем в каждый момент времени только один компьютер может вести передачу.

Так как данные в сеть передаются лишь одним компьютером, ее производительность зависит от количества компьютеров, подключенных к шине. Чем их больше, т.е. чем больше компьютеров, ожидающих передачи данных, тем медленнее сеть.

Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Так как кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:

· характеристики аппаратного обеспечения компьютеров в сети;

· частота, с которой компьютеры передают данные;

· тип работающих сетевых приложений;

· тип сетевого кабеля;

· расстояние между компьютерами в сети.

Шина - пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.

Отражение сигнала

Данные, или электрические сигналы, распространяются по всей сети - от одного конца кабеля к другому. Если не предпринимать никаких специальных действий, сигнал, достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить.

Терминатор

Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливают терминаторы (terminators), поглощающие эти сигналы. Все концы сетевого кабеля должны быть к чему-нибудь подключены, например к компьютеру или к баррел-коннектору - для увеличения длины кабеля. К любому свободному - неподключенному - концу кабеля должен быть подсоединен терминатор, чтобы предотвратить отражение электрических сигналов.

Нарушение целостности сети

Разрыв сетевого кабеля происходит при его физическом разрыве или отсоединении одного из его концов. Возможна также ситуация, когда на одном или нескольких концах кабеля отсутствуют терминаторы, что приводит к отражению электрических сигналов в кабеле и прекращению функционирования сети. Сеть «падает».

Сами по себе компьютеры в сети остаются полностью работоспособными, но до тех пор, пока сегмент разорван, они не могут взаимодействовать друг с другом.

Концепция топологии сети в виде звезды (рис.2.) пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети.

Рис.2. Топология «Звезда»

Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает. Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях.

Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети. Центральный узел управления – файловый сервер реализует оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

Достоинства

· Выход из строя одной рабочей станции не отражается на работе всей сети в целом;

· Хорошая масштабируемость сети;

· Лёгкий поиск неисправностей и обрывов в сети;

· Высокая производительность сети;

· Гибкие возможности администрирования.

Недостатки

· Выход из строя центрального концентратора обернётся неработоспособностью сети в целом;

· Для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;

· Конечное число рабочих станций, т.е. число рабочих станций ограничено количеством портов в центральном концентраторе.

При кольцевой топологии (рис.3.) сети рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

Рис.3. Топология «Кольцо»

Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географическое расположение рабочих станций далеко от формы кольца (например, в линию). Сообщения циркулируют регулярно по кругу. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять «в дорогу» по кабельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции.

Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями. Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топологий.

Отдельные звезды включаются с помощью специальных коммутаторов (англ. Hub – концентратор), которые по-русски также иногда называют «хаб».

При создании глобальных (WAN) и региональных (MAN) сетей используется чаще всего Ячеистая топология MESH (рис.4.). Первоначально такая топология была создана для телефонных сетей. Каждый узел в такой сети выполняет функции приема, маршрутизации и передачи данных. Такая топология очень надежна (при выходе из строя любого сегмента существует маршрут, по которому данные могут быть переданы заданному узлу) и обладает высокой устойчивостью к перегрузкам сети (всегда может быть найден маршрут, наименее загруженный передачей данных).


Рис.4. Ячеистая топология.

При разработке сети была выбрана топология «звезда» ввиду простой реализации и высокой надежности (к каждому компьютеру идет отдельный кабель).

1) FastEthernet с использованием 2 коммутаторов.(рис. 5)

2 сегмент
1 сегмент

Рис. 6. Топология FastEthernet с использованием 1 маршрутизатора и 2 коммутаторов.

4Схема локальной сети

Ниже представлена схема расположения компьютеров и протяжки кабелей по этажам (рис.7,8).


Рис. 7. Схема расположения компьютеров и прокладки кабеля на 1 этаже.

Рис. 8. Схема расположения компьютеров и прокладки кабеля на 2 этаже.

Данная схема разработана с учетом характерных особенностей здания. Кабели будут расположены под искусственным напольным покрытием, в специально отведенных для них каналах. Протяжка кабеля на второй этаж будет осуществляться через телекоммуникационный шкаф, который расположен в подсобном помещении, которое используется как серверная комната, где располагаются сервер и маршрутизатор. Коммутаторы расположены в основных помещениях в тумбах.

Уровни взаимодействуют сверху вниз и снизу вверх посредством интерфейсов и могут еще взаимодействовать с таким же уровнем другой системы с помощью протоколов.

Протоколы, использующиеся на каждом уровне модели OSI, представлены в таблице 1.

Таблица 1.

Протоколы уровней модели OSI

Уровень OSI Протоколы
Прикладной HTTP, gopher, Telnet, DNS, SMTP, SNMP, CMIP, FTP, TFTP, SSH, IRC, AIM, NFS, NNTP, NTP, SNTP, XMPP, FTAM, APPC, X.400, X.500, AFP, LDAP, SIP, ITMS, ModbusTCP, BACnetIP, IMAP, POP3, SMB, MFTP, BitTorrent, eD2k, PROFIBUS
Представления HTTP, ASN.1, XML-RPC, TDI, XDR, SNMP, FTP, Telnet, SMTP, NCP, AFP
Сеансовый ASP, ADSP, DLC, Named Pipes, NBT, NetBIOS, NWLink, Printer Access Protocol, Zone Information Protocol, SSL, TLS, SOCKS
Транспортный TCP, UDP, NetBEUI, AEP, ATP, IL, NBP, RTMP, SMB, SPX, SCTP, DCCP, RTP, TFTP
Сетевой IP, IPv6, ICMP, IGMP, IPX, NWLink, NetBEUI, DDP, IPSec, ARP, RARP, DHCP, BootP, SKIP, RIP
Канальный STP, ARCnet, ATM, DTM, SLIP, SMDS, Ethernet, FDDI, Frame Relay, LocalTalk, Token ring, StarLan, L2F, L2TP, PPTP, PPP, PPPoE, PROFIBUS
Физический RS-232, RS-422, RS-423, RS-449, RS-485, ITU-T, xDSL, ISDN, T-carrier (T1, E1), модификациистандарта Ethernet: 10BASE-T, 10BASE2, 10BASE5, 100BASE-T (включает 100BASE-TX, 100BASE-T4, 100BASE-FX), 1000BASE-T, 1000BASE-TX, 1000BASE-SX

Следует понимать, что подавляющее большинство современных сетей в силу исторических причин лишь в общих чертах, приближённо, соответствуют эталонной модели ISO/OSI.

Реальный стек протоколов OSI, разработанный как часть проекта, был воспринят многими как слишком сложный и фактически нереализуемый. Он предполагал упразднение всех существующих протоколов и их замену новыми на всех уровнях стека. Это сильно затруднило реализацию стека и послужило причиной для отказа от него многих поставщиков и пользователей, сделавших значительные инвестиции в другие сетевые технологии. В дополнение, протоколы OSI разрабатывались комитетами, предлагавшими различные и иногда противоречивые характеристики, что привело к объявлению многих параметров и особенностей необязательными. Поскольку слишком многое было необязательно или предоставлено на выбор разработчика, реализации различных поставщиков просто не могли взаимодействовать, отвергая тем самым саму идею проекта OSI.

В результате попытка OSI договориться об общих стандартах сетевого взаимодействия была вытеснена стеком протоколов TCP/IP, используемым в Интернете, и его более простым, прагматичным подходом к компьютерным сетям. Подход Интернета состоял в создании простых протоколов с двумя независимыми реализациями, требующимися для того, чтобы протокол мог считаться стандартом. Это подтверждало практическую реализуемость стандарта. Например, определения стандартов электронной почты X.400 состоят из нескольких больших томов, а определение электронной почты Интернета (SMTP) - всего несколько десятков страниц в RFC 821. Всё же стоит заметить, что существуют многочисленные RFC, определяющие расширения SMTP. Поэтому на данный момент полная документация по SMTP и расширениям также занимает несколько больших книг.

Большинство протоколов и спецификаций стека OSI уже не используются, такие как электронная почта X.400. Лишь немногие выжили, часто в значительно упрощённом виде. Структура каталогов X.500 до сих пор используется, в основном, благодаря упрощению первоначального громоздкого протокола DAP, получившему название LDAP и статус стандарта Интернета.

Свёртывание проекта OSI в 1996 году нанесло серьёзный удар по репутации и легитимности участвовавших в нём организаций, особенно ISO. Наиболее крупным упущением создателей OSI был отказ увидеть и признать превосходство стека протоколов TCP/IP.

Для выбора технологии рассмотрим таблицу сравнений технологий FDDI, Ethernet и TokenRing (таблица 2).

Таблица 2. Характеристики технологий FDDI, Ethernet, TokenRing

Характеристика FDDI Ethernet Token Ring
Битовая скорость, Мбит/с 100 10 16
Топология Двойное кольцо деревьев Шина/звезда Звезда/кольцо
Среда передачиданных Оптоволокно, неэкранированная витая пара категории 5

Толстый коаксиал, тонкий коаксиал,

Экранированная или неэкранированная витая пара, оптоволокно
Максимальная длина сети (без мостов)

(100 км на кольцо)

2500 м 40000 м
Максимальноерасстояние между узлами 2 км (не более 11 дБ потерь между узлами) 2500 м 100 м
Максимальноеколичество узлов

(1000 соединений)

1024

260 для экранированной витой пары,

72 для неэкранированной витой пары

После анализа таблицы характеристик технологий FDDI, Ethernet, TokenRing, очевиден выбор технологии Ethernet (вернее ее модификации FastEthernet), которая учитывает все требованиям нашей локальной сети. Т.к технология TokenRing обеспечивает скорость передачи данных до 16 мбит\сек, то мы ее исключаем из дальнейшего рассмотрения, а из-за сложность реализации технологии FDDI, наиболее разумно будет использовать Ethernet.

7Сетевые протоколы

Семиуровневая модель OSI является теоретической, и содержит ряд недоработок. Реальные сетевые протоколы вынуждены отклоняться от неё, обеспечивая непредусмотренные возможности, поэтому привязка некоторых из них к уровням OSI является несколько условной.

Основная недоработка OSI - непродуманный транспортный уровень. На нём OSI позволяет обмен данными между приложениями (вводя понятие порта - идентификатора приложения), однако, возможность обмена простыми дейтаграммами в OSI не предусмотрена - транспортный уровень должен образовывать соединения, обеспечивать доставку, управлять потоком и т. п. Реальные же протоколы реализуют такую возможность.

Сетевые транспортные протоколы обеспечивают базовые функции, необходимые компьютерам для коммуникаций с сетью. Такие протоколы реализуют полные эффективные каналы коммуникаций между компьютерами.

Транспортный протокол можно рассматривать как зарегистрированную почтовую службу. Транспортный протокол гарантирует, что передаваемые данные доходят до заданного адресата, проверяя получаемую от него квитанцию. Он выполняет контроль и исправление ошибок без вмешательства более высокого уровня.

Основными сетевыми протоколами являются:

NWLink IPX/SPX/NetBIOS-совместимый транспортный протокол (NWLink) - это NDIS-совместимая 32-разрядная реализация протокола IPX/SPX фирмы Novell. Протокол NWLink поддерживает два интерфейса прикладного программирования (API): NetBIOS и Windows Sockets. Эти интерфейсы позволяют обеспечить связь компьютеров под управлением Windows между собой, а также с серверами NetWare.

Транспортный драйвер NWLink представляет собой реализацию протоколов низкого уровня NetWare, таких как IPX, SPX, RIPX (Routing Information Protocol over IPX) и NBIPX (NetBIOS over IPX). Протокол IPX управляет адресацией и маршрутизацией пакетов данных внутри сетей и между ними. Протокол SPX обеспечивает надежную доставку данных, поддерживая правильность последовательности их передачи и механизм подтверждений. Протокол NWLink обеспечивает совместимость с NetBIOS за счет уровня NetBIOS поверх протокола IPX.

IPX/SPX (от англ. Internetwork Packet eXchange/Sequenced Packet eXchange) - стек протоколов, используемый в сетях Novell NetWare. Протокол IPX обеспечивает сетевой уровень (доставку пакетов, аналог IP), SPX - транспортный и сеансовый уровень (аналог TCP).

Протокол IPX предназначен для передачи дейтограмм в системах, неориентированных на соединение (также как и IP или NETBIOS, разработанный IBM и эмулируемый в Novell), он обеспечивает связь между NetWare серверами и конечными станциями.

SPX (Sequence Packet eXchange) и его усовершенствованная модификация SPX II представляют собой транспортные протоколы 7-уровневой модели ISO. Это протокол гарантирует доставку пакета и использует технику скользящего окна (отдаленный аналог протокола TCP). В случае потери или ошибки пакет пересылается повторно, число повторений задается программно.

NetBEUI - это пpотокол, дополняющий спецификацию интеpфейса NetBIOS, используемую сетевой опеpационной системой. NetBEUI фоpмализует кадp тpанспоpтного уpовня, не стандаpтизованный в NetBIOS. Он не соответствует какому-то конкpетному уpовню модели OSI, а охватывает тpанспоpтный уpовень, сетевой уpовень и подуpовень LLC канального уpовня. NetBEUI взаимодействует напpямую с NDIS уpовня MAC. Таким обpазом это не маpшpутизиpуемый пpотокол.

Транспортной частью NetBEUI является NBF (NetBIOS Frame protocol). Сейчас вместо NetBEUI обычно применяется NBT (NetBIOS over TCP/IP).

Как правило NetBEUI используется в сетях где нет возможности использовать NetBIOS, например, в компьютерах с установленной MS-DOS.

Повторитель (англ. repeater) - предназначен для увеличения расстояния сетевого соединения путем повторения электрического сигнала "один в один". Бывают однопортовые повторители и многопортовые. В сетях на витой паре повторитель является самым дешевым средством объединения конечных узлов и других коммуникационных устройств в единый разделяемый сегмент. Повторители Ethernet могут иметь скорость 10 или 100 Мбит/с (FastEthernet), единую для всех портов. Для GigabitEthernet повторители не используются.

Мост (от англ. bridge - мост) является средством передачи кадров между двумя (и более) логически разнородными сегментами. По логике работы является частным случаем коммутатора. Скорость обычно 10 Мбит/с (для FastEthernet чаще используются коммутаторы).

Концентратор или хаб (от англ. hub - центр деятельности) - сетевое устройство, для объединения нескольких устройств Ethernet в общий сегмент. Устройства подключаются при помощи витой пары, коаксиального кабеля или оптоволокна. Хаб является частным случаем концентратора

Концентратор работает на физическом уровне сетевой модели OSI, повторяет приходящий на один порт сигнал на все активные порты. В случае поступления сигнала на два и более порта одновременно возникает коллизия, и передаваемые кадры данных теряются. Таким образом, все подключенные к концентратору устройства находятся в одном домене коллизий. Концентраторы всегда работают в режиме полудуплекса, все подключенные устройства Ethernet разделяют между собой предоставляемую полосу доступа.

Многие модели хабов имеют простейшую защиту от излишнего количества коллизий, возникающих по причине одного из подключенных устройств. В этом случае они могут изолировать порт от общей среды передачи. По этой причине, сетевые сегменты, основанные на витой паре гораздо стабильнее в работе сегментов на коаксиальном кабеле, поскольку в первом случае каждое устройство может быть изолировано хабом от общей среды, а во втором случае несколько устройств подключаются при помощи одного сегмента кабеля, и, в случае большого количества коллизий, концентратор может изолировать лишь весь сегмент.

В последнее время концентраторы используются достаточно редко, вместо них получили распространение коммутаторы - устройства, работающие на канальном уровне модели OSI и повышающие производительность сети путём логического выделения каждого подключенного устройства в отдельный сегмент, домен коллизий.

Коммутатор или switch (от англ. - переключатель) Коммутатор (switch, switching hub) по принципу обработки кадров ничем не отличается от моста. Основное его отличие от моста состоит в том, что он является своего рода коммуникационным мультипроцессором, так как каждый его порт оснащен специализированным процессором, который обрабатывает кадры по алгоритму моста независимо от процессоров других портов. За счет этого общая производительность коммутатора обычно намного выше производительности традиционного моста, имеющего один процессорный блок. Можно сказать, что коммутаторы - это мосты нового поколения, которые обрабатывают кадры в параллельном режиме.

Это устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного сегмента. В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передает данные только непосредственно получателю. Это повышает производительность и безопасность сети, избавляя остальные сегменты сети от необходимости (и возможности) обрабатывать данные, которые им не предназначались.

Коммутатор работает на канальном уровне модели OSI, и потому в общем случае может только объединять узлы одной сети по их MAC-адресам. Для соединения нескольких сетей на основе сетевого уровня служат маршрутизаторы.

Коммутатор хранит в памяти специальную таблицу (ARP-таблицу), в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует пакеты данных, определяя MAC-адрес компьютера-отправителя, и заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит пакет, предназначенный для этого компьютера, этот пакет будет отправлен только на соответствующий порт. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется.

Коммутаторы подразделяются на управляемые и неуправляемые (наиболее простые). Более сложные коммутаторы позволяют управлять коммутацией на канальном и сетевом уровне модели OSI. Обычно их именуют соответственно, например Level 2 Switch или просто, сокращенно L2. Управление коммутатором может осуществляться посредством протокола Web-интерфейса, SNMP, RMON (протокол, разработанный Cisco) и т.п. Многие управляемые коммутаторы позволяют выполнять дополнительные функции: VLAN, QoS, агрегирование, зеркалирование. Сложные коммутаторы можно объединять в одно логическое устройство - стек, с целью увеличения числа портов (например, можно объединить 4 коммутатора с 24 портами и получить логический коммутатор с 96 портами).

Преобразователь интерфейсов или конвертер (англ. mediaconverter) позволяет осуществлять переходы от одной среды передачи к другой (например, от витой пары к оптоволокну) без логического преобразования сигналов. Благодаря усилению сигналов эти устройства могут позволять преодолевать ограничения на длину линий связи (если ограничения не связаны с задержкой распространения). Используются для связи оборудования с разнотипными портами.

Выпускается три типа конвертеров:

× Преобразователь RS-232 <–> RS-485;

× Преобразователь USB <–> RS-485;

× Преобразователь Ethernet <–> RS-485.

Преобразователь RS-232 <–> RS-485 преобразует физические параметры интерфейса RS-232 в сигналы интерфейса RS-485. Может работать в трех режимах приема-передачи. (В зависимости от установленного в конвертере программного обеспечения и состояния переключателей на плате конвертера).

Преобразователь USB <–> RS-485 - этот конвертер предназначен для организации интерфейса RS-485 на любом компьютере, имеющем интерфейс USB. Конвертер выполнен в виде отдельной платы, подключаемой к разъёму USB. Питание конвертера осуществляется непосредственно от порта USB. Драйвер конвертера позволяет создать для интерфейса USB виртуальный СОМ-порт и работать с ним как с обычным портом RS-485 (по аналогии с RS-232). Устройство обнаруживается сразу при подключении к порту USB.

Преобразователь Ethernet <–> RS-485 - этот конвертер предназначен для обеспечения возможности передачи сигналов интерфейса RS-485 по локальной сети. Конвертер имеет свой IP-адрес (устанавливаемый пользователем) и позволяет осуществить доступ к интерфейсу RS-485 с любого компьютера подключенного к локальной сети и установленным соответствующим программным обеспечением. Для работы с конвертером поставляются 2 программы: Port Redirector – поддержка интерфейса RS-485 (СОМ-порта) на уровне сетевой карты и конфигуратор Lantronix, позволяющий установить привязку конвертера к локальной сети пользователя, а также задать параметры интерфейса RS-485 (скорость передачи, количество бит данных и т.д.) Конвертер обеспечивает полностью прозрачную приемо-передачу данных в любом направлении.

Маршрутиза́тор или ро́утер (от англ. router) - сетевое устройство, используемое в компьютерных сетях передачи данных, которое, на основании информации о топологии сети (таблицы маршрутизации) и определённых правил, принимает решения о пересылке пакетов сетевого уровня модели OSI их получателю. Обычно применяется для связи нескольких сегментов сети.

Традиционно, маршрутизатор использует таблицу маршрутизации и адрес получателя, который находится в пакетах данных, для дальнейшей передачи данных. Выделяя эту информацию, он определяет по таблице маршрутизации путь, по которому следует передать данные и направляет пакет по этому маршруту. Если в таблице маршрутизации для адреса нет описанного маршрута, пакет отбрасывается.

Существуют другие способы определения маршрута пересылки пакетов, когда, например, используется адрес отправителя, используемые протоколы верхних уровней и другая информация, содержащаяся в заголовках пакетов сетевого уровня. Нередко маршрутизаторы могут осуществлять трансляцию адресов отправителя и получателя (англ. NAT, Network Address Translation), фильтрацию транзитного потока данных на основе определённых правил с целью ограничения доступа, шифрование/дешифрование передаваемых данных и т. д.

Маршрутизаторы помогают уменьшить загрузку сети, благодаря её разделению на домены коллизий и широковещательные домены, а также фильтрации пакетов. В основном их применяют для объединения сетей разных типов, зачастую несовместимых по архитектуре и протоколам, например для объединения локальных сетей Ethernet и WAN-соединений, использующих протоколы DSL, PPP, ATM, Frame relay и т. д. Нередко маршрутизатор используется для обеспечения доступа из локальной сети в глобальную сеть Интернет, осуществляя функции трансляции адресов и межсетевого экрана.

В качестве маршрутизатора может выступать как специализированное устройство, так и PC компьютер, выполняющий функции простейшего роутера.

Моде́м (аббревиатура, составленная из слов мо дулятор-дем одулятор) - устройство, применяющееся в системах связи и выполняющее функцию модуляции и демодуляции. Частным случаем модема является широко применяемое периферийное устройство для компьютера, позволяющее ему связываться с другим компьютером, оборудованным модемом, через телефонную сеть (телефонный модем) или кабельную сеть (кабельный модем).

Конечное сетевое оборудование является источником и получателем информации, передаваемой по сети.

Компьютер (рабочая станция) , подключенный к сети, является самым универсальным узлом. Прикладное использование компьютера в сети определяется программным обеспечением и установленным дополнительным оборудованием. Для дальних коммуникаций используется модем, внутренний или внешний. С точки зрения сети, «лицом» компьютера является его сетевой адаптер. Тип сетевого адаптера должен соответствовать назначению компьютера и его сетевой активности.

Сервер является также компьютером, но с большими ресурсами. Это подразумевает его более высокую сетевую активность и значимость. Серверы желательно подключать к выделенному порту коммутатора. При установке двух и более сетевых интерфейсов (в том числе и модемного подключения) и соответствующего программного обеспечения сервер может играть роль маршрутизатора или моста. Серверы, как правило, должны иметь высокопроизводительную операционную систему.

В таблице 5 приведены параметры типовой рабочей станции и ее стоимость для разрабатываемой локальной сети.

Таблица 5.

Рабочая станция

Системный блок.GH301EA HP dc5750 uMT A64 X2-4200+(2.2GHz),1GB,160GB,ATI Radeon X300,DVD+/-RW,Vista Business
Компьютер Hewlett-Packard GH301EA серии dс 5750. Данный системный блок оборудован процессором AMD Athlon™ 64 X2 4200+ c частотой 2.2 ГГц, 1024 Mб оперативной памяти DDR2, жестким диском на 160 Гб, DVD-RW приводом и установленной ОС Windows Vista Business.
Цена:16 450.00 руб.
Монитор. TFT 19 “Asus V W1935
Цена:6 000,00 руб.
Устройства ввода
Мышь Genius GM-03003 172 руб.
Клавиатура 208 руб.
Общая стоимость 22 830 руб.

В Таблице 6 приведены параметры сервера.


Таблица 6.

Сервер

DESTEN Системныйблок DESTEN eStudio 1024QM
Процессор INTEL Core 2 Quad Q6600 2.4GHz 1066MHz 8Mb LGA775 OEM Материнскаяплата Gigabyte GA-P35-DS3R ATX Модульпамяти DDR-RAM2 1Gb 667Mhz Kingston KVR667D2N5/1G - 2 Жесткийдиск 250 Gb Hitachi Deskstar T7K500 HDP725025GLA380 7200RPM 8Mb SATA-2 - 2 Видеоадаптер 512MB Zotac PCI-E 8600GT DDR2 128 bit DVI (ZT-86TEG2P-FSR) Привод DVD RW NEC AD-7200S-0B SATA ЧерныйКорпус ZALMAN HD160XT BLACK.
Цена:50 882.00 руб.

Монитор. TFT 19 “Asus V W1935

Тип: ЖК Технология ЖК: TN Диагональ: 19" Формат экрана: 5:4 Макс. разрешение: 1280 x 1024 Входы: VGA Вертикальная развертка: 75 Гц Горизонтальная развертка: 81 КГц
Цена: 6 000,00 руб.
Устройства ввода
Мышь Genius GM-03003 172 руб.
Клавиатура Logitech Value Sea Grey (refresh) PS/2 208 руб.
Общая стоимость 57 262 руб.

В программное обеспечение сервера входят:

× Операционная система WindowsServer 2003 SP2+R2

× Пакетпрограмм ABBY FineReader Corporate Edition v8.0 (серверная лицензия)

× Программа для администрирования сети SymantecpcAnywhere 12 (сервер)

В программное обеспечение рабочей станции входят:

× Операционная система WindowsXPSP2

× Антивирусная программа NOD 32 AntiVirusSystem.

× Пакетпрограмм Microsoft Office 2003 (pro)

× Пакет программ ABBY FineReader Corporate Edition v8.0 (клиентская лицензия)

× Программа для администрирования сети Symantec pcAnywhere 12 (клиент)

× Пользовательские программы

Для реальных сетей важен такой показатель производительности, как показатель использования сети (networkutilization), который представляет собой долю в процентах от суммарной пропускной способности (не поделенной между отдельными абонентами). Он учитывает коллизии и другие факторы. Ни сервер, ни рабочие станции не содержат средств для определения показателя использования сети, для этого предназначены специальные, не всегда доступные из-за высокой стоимости аппаратно-программные средства типа анализаторов протоколов.

Считается, что для загруженных систем Ethernet и FastEthernet хорошим значением показателя использования сети является 30%. Это значение соответствует отсутствию длительных простоев в работе сети и обеспечивает достаточный запас в случае пикового повышения нагрузки. Однако если показатель использования сети значительное время составляет 80...90% и более, то это свидетельствует о практически полностью используемых (в данное время) ресурсах, но не оставляет резерва на будущее.

Для проведения расчетов и выводов следует рассчитать производительность в каждом сегменте сети.

Вычислим полезную нагрузку Pп:


где n – количество сегментов проектируемой сети.

P0 = 2*16 = 32Мбит/сек

Полная фактическая нагрузка Pф рассчитывается с учетом коллизий и величины задержек доступа к среде передачи данных:

, Мбит/с, (3)

где к – задержка доступа к среде передачи данных: для семейства технологий Ethernet – 0,4, для TokenRing – 0,6, для FDDI – 0,7.

Рф = 32*(1+0.4) = 44,8 Мбит/с

Т. к. фактическая нагрузка Pф > 10 Мбит/с, то, как и предполагалось ранее, данную сеть невозможно реализовать с помощью стандарта Ethernet, необходимо применить технологию FastEthernet (100 Мбит/с).

Т.к. данной в сети мы не используем концентраторы, то рассчитывать время двойного оборота сигнала не требуется.(Сигнал коллизий отсутствует)

В таблице 7 приведен итоговый расчет стоимости сети, построенной на 2 коммутаторах. (Вариант 1 ).

Таблица 6.

В Таблице 8 приведен итоговый расчет стоимости сети, построенной на 2 коммутаторах и 1 маршрутизаторе. (Вариант 2 ).

Таблица 8.

Наименование Цена за 1 ед. (руб.) Всего (руб.)
1 Вилки RJ-45 86 2 172
2 Кабель RJ-45 UTP, lev.5e 980м. 20 19 600
3 Коммутатор TrendNet N-Way Switch TEG S224 (10/100Mbps, 24 port, +2 1000Mbps Rack Mount) 2 3714 7 428
4 Маршрутизатор , Router D-Link DIR-100 1 1 250 1 250
5 Рабочая станция 40 22 830 913 200
6 Сервер Sunrise XD (Tower/RackMount) 1 57 262 57 262
Итого: 998912

В итоге получаем два варианта сети, которые не значительно отличаются по стоимости и отвечают стандартам построения сети. Первый вариант сети уступает второму варианту, в показателе надежности, даже несмотря на то, что проектирование сети по второму варианту незначительно дороже. Следовательно, наилучший вариант построения локальной сети будет вариант два – локальная сеть, построенная на 2 коммутаторах и маршрутизаторе.

Для надёжной работы и повышения производительности сети следует вносить изменения в структуру сети только с учётом требований стандарта.

Для защиты данных от вирусов необходимо установить антивирусные программы (например, NOD32 AntiVirusSystem), а для восстановления повреждённых или ошибочно удалённых данных следует использовать специальные утилиты (например, утилиты, входящие в состав пакета NortonSystemWorks).

Хотя сеть построена с запасом производительности, всё равно следует беречь сетевой трафик, поэтому с помощью программы для администрирования следить за целевым использованием внутрисетевого и интернет-трафика. Благотворно на производительности сети скажется использование служебных приложений NortonSystemWorks(таких как дефрагментация, чистка реестра, исправление текущих ошибок с помощью WinDoctor), а так же регулярной антивирусной проверки в ночное время. Также следует разделить во времени загрузку информации из другого сегмента т.е. постараться чтобы каждый сегмент обращался к другому в отведённое ему время. Установка программ, не имеющих отношения к непосредственной области деятельности компании, должна пресекаться администратором. При монтаже сети необходимо маркировать кабель, чтобы не столкнуться с трудностями при обслуживании сети.

Монтаж сети следует осуществлять через существующие каналы и короба.

Для надежной работы сети необходимо наличие сотрудника отвечающего за всю локальную сеть и занимающегося ее оптимизацией и повышением производительности.

Периферийное (принтеры, сканеры, проекторы) оборудование следует устанавливать уже после конкретного распределения обязанностей рабочих станций.

В целях профилактики следует периодически проверять целостность кабелей в секретном полу. При демонтаже оборудования следует аккуратно обращаться с оборудованием, для возможности его последующего использования.

Кроме того, необходимо ограничить доступ в серверную комнату и к тумбам с коммутаторами.

1. В.Г. Олифер, Н.А. Олифер – СПб. Питер 2004

2. http://ru.wikipedia.org/wiki/

3. В.М. Шек, Т.А. Кувашкина «Методические указания для курсового проектирования по дисциплине Сети ЭВМ и телекоммуникаций» - Москва, 2006

4. http://catalog.sunrise.ru/

5. В.М. Шек. Лекции по дисциплине «Сети ЭВМ и телекоммуникации», 2008г.

Поделиться