Какие характеристики относятся к тонкому коаксиальному кабелю. Как выбрать коаксиальный кабель

Коаксиальный кабель представляет собой электрический кабель, состоящий из центрального медного провода и металлической оплетки (экрана), разделенных между собой слоем диэлектрика (внутренней изоляции) и помещенных в общую внешнюю оболочку (рис. 3).

Рис. 3. Коаксиальный кабель

Коаксиальный кабель до недавнего времени был очень популярен, что связано с его высокой помехозащищенностью (благодаря металлической оплетке), более широкими, чем в случае витой пары, полосами пропускания (свыше 1ГГц), а также большими допустимыми расстояниями передачи (до километра). К нему труднее механически подключиться для несанкционированного прослушивания сети, он дает также заметно меньше электромагнитных излучений вовне. Однако монтаж и ремонт коаксиального кабеля существенно сложнее, чем витой пары, а стоимость его выше (он дороже примерно в 1,5 – 3 раза). Сложнее и установка разъемов на концах кабеля. Сейчас его применяют реже, чем витую пару. Стандарт EIA/TIA-568 включает в себя только один тип коаксиального кабеля, применяемый в сети Ethernet.

Основное применение коаксиальный кабель находит в сетях с топологией ти-па шина. При этом на концах кабеля обязательно должны устанавливать-ся терминаторы для предотвращения внутренних отражений сигнала, причем один (и только один!) из терминаторов должен быть заземлен. Без заземления металлическая оплетка не защищает сеть от внешних электромагнитных помех и не снижает излучение передаваемой по сети информации во внешнюю среду. Но при заземлении оплетки в двух или более точках из строя может выйти не только сетевое оборудование, но и компьютеры, подключенные к сети.

Терминаторы должны быть обязательно согласованы с кабелем, необходимо, чтобы их сопротивление равнялось волновому сопротивлению кабеля. Например, если используется 50-омный кабель, для него подходят только 50-омные терминаторы.

Реже коаксиальные кабели применяются в сетях с топологией звезда (например, пассивная звезда в сети Arcnet). В этом случае проблема согласования существенно упрощается, так как внешних терминаторов на свободных концах не требуется.

Волновое сопротивление кабеля указывается в сопроводительной документации. Чаще всего в локальных сетях применяются 50-омные (RG-58, RG-11, RG-8) и 93-омные кабели (RG-62). Распространенные в телевизионной технике 75-омные кабели в локальных сетях используются редко. Марок коаксиального кабеля немного. Он не считается особо перспективным. Не случайно в сети FastEthernet не предусмотрено применение коаксиальных кабелей. Однако во многих случаях классическая шинная топология (а не пассивная звезда) очень удобна. Как уже отмечалось, она не требует применения дополнительных устройств – концентраторов.

Существует два основных типа коаксиального кабеля:

Тонкий (thin) кабель, имеющий диаметр около 0,5 см, более гибкий;

Толстый (thick) кабель, диаметром около 1 см, значительно более жесткий. Он представляет собой классический варианткоаксиального кабеля, который уже почти полностью вытеснен современным тонким кабелем.

Тонкий кабель используется для передачи на меньшие расстояния, чем толстый, поскольку сигнал в нем затухает сильнее. Зато с тонким кабелем гораздо удобнее работать: его можно оперативно проложить к каждому компьютеру, а толстый требует жесткой фиксации на стене помещения.

Подключение к тонкому кабелю (с помощью разъемов BNC байонетного типа) проще и не требует дополнительного оборудования. А для подключения к толстому кабелю надо использовать специальные довольно дорогие устройства, прокалывающие его оболочки и устанавливающие контакт как с центральной жилой, так и с экраном. Толстый кабельпримерно вдвое дороже, чем тонкий, поэтому тонкий кабель применяется гораздо чаще.

Как и в случае витых пар, важным параметром коаксиального кабеля является тип его внешней оболочки. Точно так же в данном случае применяются как non-plenum (PVC), так и plenum кабели. Естественно, тефлоновый кабель дороже поли-винилхлоридного. Обычно тип оболочки можно отличить по окраске (например, для PVC кабеля фирма Belden использует желтый цвет, а для тефлонового – оранжевый).

Типичные величины задержки распространения сигнала в коаксиальном кабеле составляют для тонкого кабеля около 5 нс/м, а для толстого – около 4,5 нс/м.

Существуют варианты коаксиального кабеля с двойным экраном (один экран расположен внутри другого и отделен от него дополнительным слоем изоляции). Такие кабели имеют лучшую помехозащищенность и защиту от прослушивания, но они немного дороже обычных.

В настоящее время считается, что коаксиальный кабель устарел, в большинстве случаев его вполне может заменить витая параили оптоволоконный кабель. И новые стандарты на кабельные системы уже не включают его в перечень типов кабелей.

Коаксиальный кабель. Что это?

Наверное, вы не раз слышали такие словосочетания как витая пара , экранированный провод и высокочастотный сигнал? Так вот, коаксиальный кабель — эта разновидность витой пары , но с гораздо большей помехозащищенностью, наиболее подходящий проводник для ВЧ сигнала.

Состоит из центральной жилы (проводника), экранированного слоя (экрана) и двух изолирующих слоев.

Внутренний изолятор служит для изоляции центральной жилы коаксиального кабеля от экрана, внешний — для защиты кабеля от механических повреждений и электрической изоляции.

Защита от помех коаксиальным кабелем. Причина возникновения помех

Что представляют из себя помехи в не коаксиальном кабеле

Стоит сразу разобраться с вопросом защиты от помех. Разберем общие принципы природы их возникновения и влияния помех на передачу информации.

Итак, все мы знаем, что существуют некие помехи в линиях электропередач . Они представляют из себя всплески и, наоборот, пропадания номинального (того, которое должно быть) напряжения в кабеле (в проводе). На графике (зависимости напряжения в кабеле от времени) помехи выглядят так:

Причина возникновения помех — электромагнитные поля от других сигналов и кабелей. Как мы знаем из курса школьной физики, у электричества есть две составляющие — электрическая и магнитная. Первая представляет собой течение тока по проводнику, а вторая — электромагнитное поле, которое создает ток.

Электромагнитное поле распространяется в среде в форме сферы в бесконечность. Проходя через незащищенный от помех (не коаксиальный) кабель, электромагнитный сигнал влияет на магнитную составляющую электрического сигнала в кабеле и вызывает в нем помехи, отклоняя напряжение сигнала от номинального.

Представьте себе, что мы обрабатываем (считываем) сигнал напряжением 10 В с определенной тактовой частотой, например в 1Гц. Это значит, что мы мгновенно списываем показания напряжения в линии каждую секунду. Что произойдет, если именно в момент считывания помеха сильно отклонит напряжение, например с 10 вольт до 7,4 вольт? Правильно, ошибка, мы считаем ложную информацию! Проиллюстрируем этот момент:

Но мы должны помнить о том, что напряжение у нас мерится от корпуса (или от минуса). И фишка в том, что в радиоэлектронике (в электронике высокочастотных сигналов) большую отрицательную роль играют именно высокочастотные помехи , и вот она, собственно говоря, истина: в момент, когда помеха действует на центральную жилу коаксиального кабеля , та же самая помеха действует и на экран коаксиального кабеля , а напряжение мерится от корпуса (который соединен с экраном), поэтому разность потенциалов между экранной частью коаксиального кабеля и его центральной жилой остается неизменной.

Поэтому основная задача в защите от помех при передачи сигнала — держать экранный слой или провод как можно ближе к центральному и всегда на одном и том же расстоянии.

Что лучше защищает от электромагнитных помех — витая пара или коаксиальный кабель?

Сразу ответим на вопрос. Коаксиальный кабель защищает от помех лучше, чем витая пара .

В витой паре два провода свиты между собой и заизолированы друг от друга. Плюсовой провод при сгибах может на доли миллиметра отдаляться от минусового, что отдаляет, собственно, плюс от корпуса. Кроме того, сами жилы плюсового и минусового провода за счет изоляции уже имеют между собой определенный зазор. Помеха может проскочить, но вероятность достаточно мала.

В Коаксиальном кабеле экранный слой по кругу, полностью обволакивает центральную жилу. Помеха никак не может пройти через центральную жилу, минуя экран коаксиала. Кроме того, качество материала, из которого изготавливается коаксиальный кабель, по требованиям государственного стандарта превосходит качество материалов для витых пар . Точка.

Волновое сопротивление коаксиальных кабелей.

Волновое сопротивление

Основная характеристика коаксиального кабеля — волновое сопротивление . Это величина, в общем говоря, характеризующая затухание амплитуды сигнала в коаксиальном кабеле на 1 погонный метр.

Получается она из выражения частного от напряжения сигнала, передаваемого по коаксиальному кабелю , деленного на ток при этом напряжении в коаксиальном кабеле , мерится в Омах.

Но главное, запомните что она характеризует — затухание передаваемого сигнала. Это сама суть волнового сопротивления коаксиальных кабелей. Уменьшение амплитуды напряжения и тока — есть затухание сигнала.

Для того, чтобы окунуться в волновое сопротивление коаксиальных кабелей глубже, нужно знать много разных понятий о теории электромагнитных волн, таких как амплитуда без учета затухания, активное погонное сопротивление, коэффициент затухания электромагнитных волн в коаксиальном волноводе , несколько постоянных электрических величин, затем построить пару интегральных волновых графиков и понять, что все-таки, 77 Ом — идеально подходит для советского телевидения, 30 Ом — идеально подходит для всего кроме советского телевидения, ну а 50 Ом — золотая середина между советским телевидением, коаксиальным кабелем и всем остальным!

Но лучше — запомните суть, а остальному — поверьте на слово)

Стандарты волновых сопротивлений коаксиальных кабелей:

50 Ом. Самый распространенный стандарт коаксиального кабеля . Оптимальные характеристики по передаваемой мощности сигнала, электрической изоляции (плюса от минуса), минимальные потери сигнала при передаче радиосигнала.

75 Ом. Был широко распространен в СССР в части передачи телевизионного и видеосигнала и, что примечательно, оптимально подходит именно для этих целей.

100 Ом, 150 Ом, 200 Ом. Применяются крайне редко, в узкоспециализированных задачах.

Также, немаловажными характеристиками являются:

  • упругость;
  • жесткость;
  • диаметр внутренней изоляции;
  • тип экрана;
  • металл проводника;
  • степень экранировки.

Остались вопросы? Напишите в комментарии) Мы ответим!

Коаксиальный кабель применяется для передачи телевизионного сигнала. С появлением и развитием систем видеонаблюдения различного типа и назначения кабель стал применяться для передачи сигнала от видеокамер до комплекса централизованного наблюдения. Для этих целей используется как обычный, так и современный цифровой коаксиальный кабель. В этой статье будет приведен небольшой анализ видов и особенностей применения этой кабельной продукции для целей видеонаблюдения.

Виды и особенности кабеля

Этот кабель изобретен в 1880 году в Великобритании. Конструктивная особенность коаксиального кабеля - это совмещение на одной оси двух проводников, разделенных слоем диэлектрического материала в общей внешней оболочке. Изначально коаксиальный радиочастотный кабель использовался для передачи телевизионного сигнала от антенн домовой сети общего пользования и индивидуальных антенных устройств до телевизоров, а также в системах радиорелейной, радиопередающей, спутниковой, мобильной радиосвязи. В этих областях он применяется и сейчас. В основном, это мощные кабели с большим сечением внутреннего проводника и оплетки в жесткой оболочке. В системах видеонаблюдения в связи с особенностями прокладки в стесненных условиях, большим числом изгибов кабеля применяются гибкие кабели меньших сечений в более мягкой оплетке.

Виды кабельной продукции

Существует два вида кабельной продукции, которую используют для прокладки в системах видеонаблюдения:

  • Обычный коаксиальный;
  • Комбинированный (коаксиальный + 2 провода для подключения электропитания видеокамер и/или передачи управляющих сигналов) кабель. Изготавливается также кабель с несущим стальным тросом для наружной воздушной прокладки между зданиями.

Применение комбинированного кабеля предпочтительней по многим параметрам:

  • Стоимость кабеля ниже суммы цен обычного коаксиального кабеля и двухжильного электрического провода при одинаковых характеристиках по сечению, материалу жил, оплетке и изоляции;
  • Более легкая прокладка, удобный монтаж при меньшем количестве крепежных изделий и соответственно опрятный внешний вид, что особенно важно при прокладке в офисных, торговых и других общественных помещениях и зданиях.

Маркировка

Наиболее известен коаксиальный кабель для видеонаблюдения таких маркировок:

  • РК – кабели, произведенные в России;
  • RG – импортного производства.

Марок комбинированного видеокабеля – КВК значительно больше:

  • КВК-В – в поливинилхлоридной внешней оболочке для внутренней прокладки;
  • КВК-П – во внешней оболочке из светостойкого полиэтилена для наружной прокладки;
  • КВК-Пт – аналогичен по изготовлению КВК-П, но имеет стальной трос для наружной прокладки между зданиями и сооружениями;
  • ККСВ и ККСП – для внутренней и наружной прокладки, с одножильным внутренним проводником;
  • ККСВГ и ККСПГ – такие же кабели, но с многожильным внутренним проводником;
  • КВКнг – универсальный кабель, часто ошибочно называемый за обозначение «нг» негорючим, не распространяет горение при групповой прокладке.

Виды коаксиального кабеля

Основные параметры: общая толщина кабеля, толщина и плотность оплетки, сечение внутреннего проводника, применяемые в производстве кабеля материалы прямо влияют на волновое сопротивление кабеля. Волновое сопротивление – эта электрическая характеристика кабеля, измеряемая в Ом. Она показывает возможность и качество передачи телевизионного сигнала от видеокамеры до приемного устройства (видеорегистратора с монитором или персонального компьютера, выбранного в качестве рабочего места оператора). В системе видеонаблюдения объекта охраны рекомендуется использовать кабель с одинаковым волновым сопротивлением для обеспечения качества сигнала, отсутствия дополнительных помех и искажений.

Также условно делят коаксиальный кабель по общей толщине:

  • Тонкий – до 50 мм, с одинарной оплеткой и тонкой внешней оболочкой, для прокладки в зданиях на расстояние не более 200 до дальней видеокамеры от комплекса наблюдения;
  • Толстый – до 100 мм, с двойной оплеткой, толстой внешней оболочкой, позволяющий передачу видеоизображения с камеры без затухания телевизионного сигнала на расстояние до 650 м, что очень важно для систем видеонаблюдения на предприятиях и складах.

Состав и конструкция кабеля

Элементами коаксильного кабеля являются:

  • Внутренний электрический проводник или центральная жила;
  • Оболочка из диэлектрического материала;
  • Экран из двухсторонней фольги. Применяется не во всех типах кабеля;
  • Оплетка разной плотности из меди;
  • Наружная оболочка.

Внутренний проводник изготавливают:

  • Из одножильной алюминиевой или медной проволоки;
  • Покрытой слоем меди проволоки из стали или алюминия;
  • Многожильной проволоки из меди;
  • Покрытой слоем серебра медной проволоки.

Медь и алюминий используются как в очищенном виде, так и в качестве своих сплавов. Внутренний проводник в коаксиальном кабеле является основным элементом, служащим для передачи сигнала. Материал внутреннего проводника или центральной жилы легко определяется внешним осмотром среза кабеля: серебристый цвет – алюминий или сталь с медным покрытием, полностью золотистый – медь. Чем больше сечение, тем лучший сигнал можно передать. Но не следует забывать, что прямо пропорционально будет расти цена на 1 погонный метр кабеля и увеличиваться его жесткость, что не всегда приемлемо.

Оболочка из диэлектрического материала изолирует внутренний проводник от оплетки. Выполняется из монолитного или вспененного полиэтилена или полиуретана. Монолитный материал более пригоден при прокладке через помещения с высокой влажностью, лучше защищает от наводок, механических повреждений центральной жилы при сдавливании, из-за жесткости ограничен при необходимости прокладки по коридорам и помещениям с множеством поворотов, где более применим гибкий кабель с изоляцией из вспененного пористого материала.

Оплетка кабеля служит вторым проводником и заземленным экраном для защиты центрального проводника. Иногда дополняется экраном из металлической фольги. Чем плотнее оплетка с большим содержанием в проволоке меди, тем лучший обеспечивается видеосигнал.

Наружная оболочка кабеля – защита от внешних воздействий. Выполняется из поливинилхлоридного пластиката.

Стандартная кабельная продукция марок РК, RG – коаксиальные оплеточные кабели с изоляцией из монолитного или пористого полиэтилена. Одножильный или многожильный внутренний проводник из меди или покрытой медью стальной проволоки. Внешний проводник – фольга из алюминия + медная оплетка или две посеребренные медные оплетки. Оболочка выполнена из пластиката, не распространяющего горение.

Выбор коаксиального кабеля

Подходящий по всем параметрам коаксиальный кабель для видеонаблюдения выбирается исходя из задач и условий при организации системы наблюдения на каждом конкретном объекте охраны. Эти задачи и условия изложены в проектно-сметной документации, если она имеется или в техническом задании заказчика. В первом случае кабель выбран. Во втором варианте, который встречается гораздо чаще, подрядчику или собственнику, собирающемуся монтировать систему видеонаблюдения самостоятельно, следует рассмотреть и оценить несколько существенных параметров:

  • Расстояния до выбранных мест установки видеокамер;
  • Наличие распределительных электрощитов, коробок осветительной сети недалеко от мест установки камер;
  • Однородность способа прокладки кабеля до каждой камеры (внутренняя, наружная, воздушная на тросе);
  • Наличие источников электрических наводок и электромагнитных помех по выбранной линии прокладки кабеля (силовые и осветительные электротрассы, электродвигатели, мощные электрические приборы и другие устройства, создающие вокруг себя электромагнитное поле), что приведет к потере качества видеоизображения;
  • Требования к кабельной продукции по цвету, толщине, возможности прокладки за подвесными потолками, в кабельных каналах, в том числе существующих на объекте, для сохранения целостности интерьера помещений;
  • Необходимость записывать звуковой сигнал.

Важны также выбранные разъемы для коаксиального кабеля, позволяющие правильно подключить кабельную линию к видеокамере.

Рассмотрев все условия и варианты прокладки, составить простейший кабельный журнал с промером расстояний, учитывающий геометрию прокладки, количество изгибов.

Определяющим фактором служит длина коаксиального кабеля для видеонаблюдения, потому что кабель, прокладываемый до каждой камеры должен выполняться цельным куском, без каких-либо соединений для обеспечения качества передачи сигнала.

Необходимо учитывать защиту кабеля от механических повреждений, влажность в помещениях, климатические условия и температуру воздуха во время монтажных работ при наружной прокладке, необходимость переходов между зданиями. С учетом этого, можно сделать выводы о возможности и необходимости применения тех или иных видов кабеля. Часто в одной системе используются различные виды кабеля: обычный, комбинированный, на тросе.

В заключение стоит сказать, что выбор кабеля очень важен. Но это только один элемент системы видеонаблюдения и добиться поставленных задач можно только правильным подбором всего перечня необходимого оборудования, что послужит темами других статей.

Основные параметры коаксиального кабеля

Импеданс - основной показатель, определяющий возможность передачи энергии сигнала по кабелю между источником и приемником. Все элементы на пути сигнала, разъемы и сам кабель должны иметь один импеданс. Несоблюдение этого правила приводит к внутренним отражениям в кабеле, что может привести к появлению на изображении двойных контуров. Самой частой причиной появления отражений являются некачественные разъемы или их неправильная установка, а также применение разъемов и кабелей разного импеданса.
Стандартный импеданс видеокабелей составляет 75 Ом.

Затухание - показатель потерь энергии сигнала внутри кабеля. Каждый кабель имеет свои частотные свойства, поэтому ослабление на разных частотах тоже разное и чем частота выше, тем ослабление больше.

Сопротивление - показатель качества проводника, буквально показывающий, какая часть энергии сигнала превратится в тепло. Результат таких потерь - снижение уровня сигнала, а соответственно, динамической яркости изображения.
Сопротивление измеряется в омах (?), и именуется иначе как сопротивление постоянному току или активное сопротивление. Для кабелей сопротивление указывается как Ом на 100 метров (?/100m) или Ом на 1000 футов (?/1,000 feet) и может именоваться также как погонное сопротивление.
Сопротивление зависит от материала проводника, его размеров и температуры.
Лучшие кабели имеют сигнальные проводники из химически чистой меди или покрываются тонким слоем серебра.

Емкость. По конструкции любой коаксиальный кабель - вытянутый конденсатор. Емкость измеряется в фарадах (F), а емкость кабеля в пикофарадах на метр (pF/m) или в пикофарадах на фут (pF/ft).
Емкость кабеля влияет на высокочастотные составляющие видеосигнала, то есть на четкость и детализацию изображения. Емкость определяется качеством диэлектрика и конструкцией кабеля. Этот параметр особенно важен при передаче цифровых сигналов.

Применяемые для систем видеонаблюдения коаксильные кабели всех видов (кабели снижения, магистральный кабель, распределительный кабель, абонентский кабель) должны иметь волновое сопротивление 75 Ом.
Условные обозначения отечественных коаксиальных кабелей согласно ГОСТу 11326.0.78 имеет следующий вид:РК.W-d-mn-q.
Первые две буквы (РК) указывают тип кабеля-радиочастотный, коаксиальный.
Первое число W означает величину номинального волнового сопротивления (50, 75, 100, 150, 200 Ом).
Второе число d соответствует номинальному диаметру изоляции округленному до меньшего ближайшего целого числа для диаметров более 2 мм (за исключением диаметра 2,95 мм, который округляется до 3 мм и диаметра 3,7 мм, который не округляется).
В зависимости от диаметра по изоляции кабеля подразделяются на субминиатюрные (до 1 мм), миниатюрные (1,5-2,95 мм), среднегабаритные (3,7-11,5 мм) и крупногабаритные (более 11,5 мм). Номинальный диаметр по изоляции коаксиального кабеля должен быть равен одной из величин следующего ряда:
0,15; 0,3; 0,6; 0,87; 1; 1,5; 2,2; 2,95; 3,7; 4,6; 4,8; 5,6; 7,25; 9; 11,5; 13; 17,3; 24; 33; 44; 60; 75 мм.
Для соединений между аппаратурой применяются в основном кабели от 5,6 до 7,5мм, для магистральных соединений применяются кабели 9-13 мм. Обычно самый лучший 11,5 мм.
Число «m» обозначает группу изоляции и категорию теплостойкости кабеля:

    1-кабели со сплошной изоляцией обычной теплостойкости;
    2-кабели со сплошной изоляцией повышенной теплостойкости;
    3-кабели с полувоздушной изоляцией обычной теплостойкости;
    4-кабели с полувоздушной изоляцией повышенной теплостойкости;
    5-кабели с воздушной изоляцией обычной теплостойкости;
    6-кабели с воздушной изоляцией повышенной теплостойкости;
    7-кабели высокой теплостойкости.

Число « n» указывает на порядковый номер разработки.
В отдельных случаях в условное обозначение вводится дополнительная буква (q) :

    С - кабель повышенной однородности и фазовой стабильности;
    Г - герметичный;
    Б - имеет бронепокров;
    ОП - имеет поверх оболочки вылетку стальных оцинкованных проволок.

Например: РК-75-4-11-С-это означает радиочастотный, коаксиальный с номинальным волновым сопротивлением 75 Ом, номинальным диаметром изоляции 4,6 мм, со сплошной изоляцией обычной теплостойкости, порядковый номер разработки 1, кабель повышенной однородности.

Маркировка и обозначения импортных кабелей устанавливается международными, национальными стандартами, а также собственными стандартами предприятий-изготовителей (наиболее распространённые серии марок RG, DG и др.)

При монтаже коаксиальных кабелей необходимо соблюдать минимальные радиусы изгиба (оговариваются в стандарте или ТУ на кабели разных марок).
Так, для кабеля РК-75-4-11 минимальный радиус изгиба при t> +5°C - 40 мм, а при t< +5°C - 70 мм.
Сгибать кабель под меньшим радиусом не рекомендуется. Следует также учитывать, что под действием собственного веса кабель вытягивается.
Это необходимо учитывать при прокладке кабеля (по вертикали) и между строениями. Его следует закреплять к стене (мачте) или вспомогательному тросу через каждые 1-2 м.

При хранении кабелей с воздушной и полувоздушной изоляцией их концы должны быть защищены от проникновения влаги внутрь кабеля, а при эксплуатации необходимо применять герметичные соединители.

Срастить два отрезка коаксиального кабеля можно разными способами включая пайку. Наиболее простой способ соединения пайкой с помощью проволочного бандажа показан на рис. 3-1. При этом часть изоляции кабеля не восстанавливается, что приводит к нарушению волнового сопротивления в месте пайки, кроме того, возрастают потери сигнала. Поэтому такой способ сращивания кабелей пригоден только на радиочастотах метровых волн (до 200…300 МГц). Однако его иногда приходится использовать при соединении синфазных антенн, сборке фильтров сложения и других устройств.

Рис. 3-1 Сращивание коаксиальных кабелей с помощью проволочного бандажа:
1, 2 - голый монтажный провод;
3 - пайка центральных проводников.

Наиболее распространенный способ сращивания отрезков кабеля пайкой - в стык (Рис. 3-2).

Рис. 3-2 . Соединение кабелей способом встык:
1 - разделка оплетки и пайка центральных проводников;
2 - восстановление изоляции;
3 - накладка проволочного бандажа на оплетку.

Разделка концов кабелей заключается в снятии с них защитной оболочки, экранирующей оплетки, изоляции и зачистке жил.
Для снятия защитной полиэтиленовой и поливинилхлоридной оболочки на кабеле делают продольный и кольцевой надрез специальным монтажным ножом.

На каждом из составляемых концов внешнюю оболочку разрезают на две части длиной по 80 мм, которые отгибают в противоположную от конца кабеля сторону и временно закрепляют. Медную оплетку на концах кабеля расплетают на 15 мм. Прядки оплетки отгибают в противоположную соединению сторону. Нерасплетенную часть оплетки сдвигают в ту же сторону. С каждого конца кабеля с центрального провода снимают изоляцию на 30 мм. Перед зачисткой многопроволочную центральную жилу расплетают и каждую проволоку токоведущих жил зачищают наждачной бумагой, сложенной вдовое.

Если центральный провод многопроволочный, внутренние проводники концов кабеля соединяют в навив. Если он однопроволочный и достаточно толстый (например, у кабеля марки РК-75-9-12 диаметр внутреннего проводника равен 1,37 мм), то оба конца центрального провода следует спилить до половины с помощью надфиля примерно на 10 мм, залудить, а при пайке наложить один на другой, чтобы не было выступающих частей.

Если центральные провода тонкие, их можно сложить внахлест на 10 мм (заходят друг за друга), а затем произвести пайку. Предварительно место пайки покрывают флюсом из раствора канифоли в спирте. Место пайки центральных проводов лучше всего поместить в ванночку с расплавленным припоем ПОС-60 на 10…15 с. Пайку с помощью кислоты использовать не следует.

Чтобы не изменить волновое сопротивление, необходимо восстановить на месте сращиваемого участка кабеля внутреннюю изоляцию (предварительно изготавливается из снятой с кабеля внутренней полиэтиленовой изоляции). В трубке делают продольный разрез и надевают на место пайки. Швы трубки и места соединения с изоляцией нагревают до растекания полиэтилена.

На следующем этапе сращивают оплетки кабелей. Для этого их снова сдвигают к концам кабелей. Концы оплеток для большей прочности можно обмотать несколькими витками луженой голой монтажной проволоки, а затем после обработки флюсом места соединения произвести пайку, как показано на рисунке.

В определенных случаях лучше наложить поверх соединенного участка с восстановленной изоляцией деталь из жести или медной фольги толщиной 0,1…0,2 мм, как показано на Рис.3-3.

На последнем этапе на оплетку накладывают отогнутые концы защитной оболочки. При необходимости их укорачивают.

Для защиты от проникновения влаги и придания прочности соединению по всей его длине целесообразно плотно обмотать изолентой ПХВ.

Рис. 3-3 . Вариант сращивания коаксильных кабелей.

В пособии к РД 78.145-93 указывается следующий способ сращиваняя коаксильного кабеля:

    Снять с концов кабеля, предназначенных для соединения, верхнюю полиэтиленовую оболочку на длине не менее 30 мм от концов;
    распустить металлическую оплетку, состоящую из тонких медных проволок на одном конце кабеля на 20 мм, на другом конце обрезать на такую же длину и из распущенных медных проволок оплетки скрутить 4 жгута и залудить;
    - залудить оплетку второго конца кабеля по окружности на длине не менее 5 мм (во избежание расплавления полиэтиленовой изоляции центральной жилы, под оплетку, необходимо положить предохраняющую изоляцию из кабельной бумаги в 2 слоя);
    - освободить центральную жилу кабеля от изоляции на длину не менее 15 мм;
    - скрутить центральные жилы двух кабелей между собой и паять.
    Длина оголенного слоя должна быть 15 мм;
    - разрезать снятую изоляцию центральной жилы, наложить ее на спай центральных жил и, расправляя паяльником, заделать спай;
    - припаять облуженные четыре жгута к облуженной оплетке второго кабеля симметрично со всех сторон;
    - надеть на готовое соединение двух кабелей снятую разрезанную вдоль наружную изоляцию и оплавить ее с помощью паяльника с основной изоляцией кабеля.

При пайке центральной жилы нельзя допускать ее перегрева, т. к. при этом происходит смещение и нарушается однородность волнового сопротивления.
При монтаже кабелей и разделке оплеток последние нельзя разрезать: оплетку надо расплести, скрутить в одну или две косички и залудить.
Разделывая кабель, необходимо следить за тем, чтобы случайно не была подрезана центральная жила и чтобы не замкнуть на нее проволочную оплетку.

При такой заделке кабеля его однородность практически не нарушается. В противном случае, на экране видеоконтрольного устройства могут появиться повторы, вертикальные полосы и ухудшается помехозащищенность кабеля.

Если коаксиальный кабель проложен параллельно электросети, возникают проблемы. Величина ЭДС, наведенной в центральной жиле, зависит, во-первых, от тока, протекающего по сетевому кабелю, что, в свою очередь, зависит от тока потребления нагрузки по данной линии. Во-вторых, она зависит от того, насколько далеко коаксиальный кабель пролегает от силового кабеля. И, наконец, она зависит от того, на какой протяженности эти кабели пролегают вместе. Иногда соседство на протяжении 100 м не оказывает никакого влияния, но если по силовому кабелю течет большой ток, то даже 50 м могут сказаться на качестве видеосигнала. При монтаже постарайтесь (всегда, когда это возможно) сделать так, чтобы силовые и коаксиальные кабели не проходили очень близко друг к другу. Для ощутимого уменьшения электромагнитных помех необходимо, чтобы расстояние между ними составляло хотя бы 30 см.
На экране видеомонитора наводки электросети имеют вид нескольких жирных горизонтальных полос, медленно сползающих вверх или вниз. Скорость их перемещения определяется разницей между частотой полей видеосигнала и промышленной частотой, и может составлять от 0 до 1 Гц. В результате на экране появляются неподвижные или очень медленно перемещающиеся полосы. Другие частоты проявляются в виде различных шумовых картин - в зависимости от источника наводок. Главное правило заключается в том, что, чем выше частота наведенного нежелательного сигнала, тем тоньше детали шумовой картины. Периодические наводки, вроде молнии или проезжающего автомобиля, будут давать нерегулярную картину шумов.

Разрыв кабеля посередине и заделка образовавшихся концов приведет к некоторой потере сигнала, особенно, если концы заделаны плохо или использованы некачественные BNC-разъемы. Хорошая заделка дает потерю сигнала не более 0,3:0,5 дБ. Если в кабеле не слишком много подобных сращиваний, то потери сигнала незначительны.

Основное назначение коаксиального кабеля — передача сигнала в различных областях техники:

  • системы связи;
  • вещательные сети;
  • компьютерные сети;
  • антенно-фидерные системы;
  • АСУ и другие производственные и научно-исследовательские технические системы;
  • системы дистанционного управления, измерения и контроля;
  • системы сигнализации и автоматики;
  • системы объективного контроля и видеонаблюдения;
  • каналы связи различных радиоэлектронных устройств мобильных объектов (судов, летательных аппаратов и др.);
  • внутриблочные и межблочные связи в составе радиоэлектронной аппаратуры;
  • каналы связи в бытовой и любительской технике;
  • военная техника и другие области специального применения.

Устройство

Коаксиальный кабель (см. рисунок) состоит из:

  • A — оболочки (служит для изоляции и защиты от внешних воздействий) из светостабилизированного (то есть устойчивого к ультрафиолетовому излучению солнца) полиэтилена, поливинилхлорида, повива фторопластовой ленты или иного изоляционного материала;
  • B — внешнего проводника (экрана) в виде оплетки, фольги, покрытой слоем алюминия пленки и их комбинаций, а также гофрированной трубки, повива металлических лент и др. из меди, медного или алюминиевого сплава;
  • C — изоляции, выполненной в виде сплошного (полиэтилен, вспененный полиэтилен, сплошной фторопласт, фторопластовая лента и т. п.) или полувоздушного (кордельно-трубчатый повив, шайбы и др.) диэлектрического заполнения, обеспечивающей постоянство взаимного расположения (соосность) внутреннего и внешнего проводников;
  • D — внутреннего проводника в виде одиночного прямолинейного (как на рисунке) или свитого в спираль провода, многожильного провода, трубки, выполняемых из меди, медного сплава, алюминиевого сплава, омеднённой стали, омедненного алюминия, посеребренной меди и т. п.

Благодаря совпадению центров обоих проводников, а также определенному соотношению между диаметром центральной жилы и экрана, внутри кабеля в радиальном направлении образуется режим стоячей волны, позволяющий снизить потери электромагнитной энергии на излучение почти до нуля. В то же время экран обеспечивает защиту от внешних электромагнитных помех.

Существует несколько распространенных заблуждений насчет коаксиального кабеля.

Распространенное заблуждение, что все белые кабели — хорошие

Не все белые кабели — качественные, и не все качественные кабели — белые! В основе этого заблуждения лежит внешнее сходство дешевых кабелей с продукцией ведущих мировых производителей. Основными отличиями качественных кабелей от подделок являются физически вспененный диэлектрик с инжекцией газа и двойная фольга (фольга — полиэстер — фольга) в качестве сплошного экрана. Физически вспененный диэлектрик представляет собой структуру из изолированных ячеек, заполненных газом. Он не впитывает воду и более устойчив к механическому воздействию. Диэлектрическая проницаемость такого материала близка к идеальной и сохраняется на протяжении 15 лет и более, а следовательно, и потери в кабеле в результате старения близки к первоначальным.

Так как производители дешевых кабелей не могут позволить себе дорогостоящие технологии, они применяют химически вспененный диэлектрик. Он как губка впитывает влагу при поврежденной наружной оболочке и чувствителен к внешним механическим воздействиям. Кроме того, в результате старения в нем увеличиваются потери (рис.1). Также в дешевых кабелях не применяют двойную фольгу (а только одинарную) в качестве основного экрана, что уменьшает экранирующий эффект и делает кабель чувствительным к внешним помехам (радиоудлинители, SENAO и пр.). Поэтому такой кабель нельзя использовать в интерактивных сетях с обратным каналом. Если в сомнительных кабелях используется медная оплетка (паяющийся кабель), то в качественных кабелях используется оплетка из луженой меди. Сочетание "олово — алюминий" более предпочтительно в сравнении с "медь — алюминий". То есть при повреждении наружной оболочки кабеля или негерметичном разъеме влага попадает на внешний проводник, и в результате электрохимической реакции происходит разрушение алюминиевой фольги. Это приводит к существенному снижению экранирующих свойств кабеля.

  • эксплуатационные характеристики дешевых кабелей ухудшаются с течением времени;
  • экранирующие свойства таких кабелей ниже, чем у качественных кабелей мировых производителей;
  • хотя дешевые кабели имеют характеристики лучше, чем отечественный кабель РК75-4-11, их не следует применять в сетях, где предполагается использовать обратный канал. Область применения этих кабелей — неответственные кабельные разводки с высоким уровнем сигнала, если нет особых требований по экранировке.

Необоснованное преувеличение важности вторичной оплетки

Бытует мнение, что чем гуще оплетка, тем лучше кабель. Это не совсем так! Что до низких потерь в кабеле... Мол, чем гуще оплетка — тем меньше потерь! Действительно, затухание в коаксиальном кабеле складывается из потерь в проводниках, потерь в диэлектрике и потерь на излучение. Последний параметр рассматривается отдельно и характеризует эффективность экранирования.

Поэтому начнем по порядку:

  1. Потери в проводниках зависят от частоты сигнала, вследствие уменьшения толщины скин-слоя и соответственного уменьшения проводимости. Использование в кабелях высококачественной меди в слое покрытия центрального проводника или для всего центрального проводника позволяет снизить общее затухание в кабеле.
  2. Потери в диэлектрике тоже зависят от частоты сигнала. Мощность потерь в диэлектрике расходуется на переориентацию молекул диэлектрика в ВЧ-поле. С увеличением диэлектрической проницаемости материала мощность потерь также растет. Применение в качестве диэлектрика физически вспененного (а не сплошного) полиэтилена позволяет снизить величину потерь в диэлектрике. Под физически вспененным диэлектриком мы понимаем вспенивание с инжекцией газа. При этом в диэлектрике создаются изолированные, заполненные инертным газом (азотом) микропоры. Именно такая структура и обеспечивает низкие потери в диэлектрике и гарантирует его стабильность на протяжении многих лет эксплуатации. Применение такого диэлектрика в кабелях CAVEL обеспечивает снижение параметров в результате старения всего на 5%, а в кабелях BELDEN — на 1%. В кабелях, где по причинам экономии такая технология не применяется, происходит снижение параметров на 50...70%. Отсюда правило: мы не такие богатые, чтобы покупать дешевые вещи!
  3. Эффективность экранирования определяет относительный уровень мощности, излучаемой кабелем в эфир и, одновременно, степень защищенности кабеля от внешних помех. Коэффициент экранирования (выраженный в децибелах) определяется как отношение мощности сигнала внешней помехи к мощности, создаваемой этой помехой в кабеле.

Высокая степень экранирования в кабелях достигается за счет использования двухслойного комбинированного экрана — алюминиевой фольги и оплетки из витых проводников. В качестве первого экрана применяется лента из полистирола, ламинированная с двух сторон алюминием, а в качестве второго слоя используют оплетки из луженой меди — CuSn или алюминия AL (это что касается качественных кабелей). Так вот именно этот первый слой и выполняет основные экранирующие функции. Ко всему прочему, экранирующие свойства меди выше, чем у алюминия, поэтому, где достаточно 40% меди, надо 80% алюминия! Другими словами, одинаковые кабели, но с разной плотностью оплетки, например 40% и 80%, будут иметь одинаковое затухание.

Для дешевых же кабелей трехслойный (AL-пленка-AL) первый экран — это непозволительная роскошь. В лучшем случае применяется фольга с полиэфирной подложкой, а обычно алюминий, напыленный на подложку. Вот где густая оплетка просто необходима! Но, увы, "экономика должна быть экономной". Отсюда правило: бесплатный сыр только в мышеловке.

Что до повышенной прочности... Если кабели подвергаются растяжению в процессе прокладки или имеются длинные провесы (растяжение под действием собственного веса), то в таких случаях применяется центральная жила из стали, плакированной медью. И в таких кабелях именно стальная центральная жила служит упрочняющим элементом, а не оплетка, даже самая густая. Кстати, качество плакированного слоя — тоже весьма немаловажный вопрос, ведь мы помним о скин-эффекте!

И непосредственно об экранировке: основные экранирующие функции выполняет слой фольги (в качественных кабелях), а оплетка играет вторичную экранирующую функцию и больше предназначена для передачи тока, а также придания гибкости кабелю. То есть чем больше плотность оплетки, тем больший ток можно передать (например, при дистанционном питании усилителей). Влияние густоты оплетки на эффективность экранирования показано в таблице.

Из таблицы видно, что при увеличении плотности оплетки с 40% до 70% коэффициент экранирования возрастает всего на 5 дБ, при этом стоимость кабеля увеличивается. Отсюда правило: если нет разницы, зачем платить больше? Пожалуй, это единственное, где можно сэкономить на кабеле.

Коаксиальный кабель, выпускаемый перечисленными фирмами, разработан в соответствии с международным стандартом IEC 1196, принятым для радиочастотного кабеля, и имеет сертификат ISO 9001 и 9002, что служит подтверждением качества продукции.

Коаксиальные кабели являются важнейшим пассивным элементом в сетях кабельного телевидения. Их качество и надежность существенно влияют на срок службы кабельных разводок.

  • при покупке "белого кабеля" неплохо уточнить название производителя (указывается на кабеле), и если оно не является одним из тех, что приведены в списке, необходимо убедиться, имеет ли производитель соответствующие сертификаты качества;
  • вряд ли стоит экономить на покупке 30 м кабеля и покупать подделку, если можно приобрести качественный кабель раз и на всю жизнь;
  • не стоит переплачивать за густую оплетку, а если нужна повышенная экранировка, то для этого существуют специальные кабели, но это уже другая история...

Далее хотелось бы глубже коснуться ряда проблем и вопросов, с которыми сталкиваются потребители коаксиального кабеля. Среди многих вопросов, довольно часто возникают вопросы по оболочке коаксиального кабеля.

Какая оболочка лучше: полиэтилен или поливинилхлорид?

Очень часто данный вопрос рассматривается без учета специфичных условий эксплуатации коаксиального кабеля.

К данным условиям можно отнести следующие моменты:

  • Климатические условия эксплуатации
    В эту группу входят параметры устойчивости коаксиального кабеля к неэлектрическим и немеханическим воздействиям внешней среды. Это устойчивость к воздействиям повышенной и пониженной температуры, влажности, солнечного излучения, агрессивных сред.
  • Механические условия эксплуатации
    В эту группу входят параметры устойчивости коаксиального кабеля к механическим воздействиям. Это устойчивость к вибрации, линейным нагрузкам, перегибам, динамическому воздействию пыли.

Поливинилхлоридный пластикат наиболее широко применяется для оболочек импортного коаксиального радиочастотного кабеля. При нормальных и повышенных температурах поливинилхлоридный пластикат обеспечивает бoльшую гибкость кабеля и удобство монтажа соединителей, чем полиэтилен.

Он негорюч и может быть белым, что улучшает внешний вид кабеля.

Однако при повышенных температурах пластификатор, содержащийся в оболочке, может мигрировать в полиэтиленовый диэлектрик, значительно увеличивая в нем диэлектрические потери. Этот недостаток мировые производители кабельной продукции устраняют применением специального пластиката с немигрирующими пластификаторами.

В основе специального пластиката лежит использование качественного первичного поливинилхлорида, позволяющего реализовать все достоинства оболочки данного типа.

Производители дешевого кабеля не могут позволить себе использование дорогостоящих материалов.

Применяемый этими производителями пластикат из вторичного сырья по ряду параметров значительно уступает специальному поливинилхлориду. Это высокое влагопоглощение, невысокая стойкость к ультрафиолетовому облучению, низкая прочность и упругость. Все эти недостатки приводят к быстрому старению оболочки и потере ей своих защитных функций.

Как следствие данных процессов возникает нестабильность электрических параметров коаксиального кабеля, который зачастую начинает точно отслеживать погодные условия изменением своих электрических характеристик. Усталость и снижение механической прочности оболочки коаксиального кабеля наиболее ярко проявляется в ее поперечном обрыве при длинных вертикальных провесах без промежуточных креплений, что часто практикуется у нас.

В оболочке, выполненной из качественного поливинилхлоридного пластиката, подобные недостатки отсутствуют. Эксплуатационные параметры указываются в каталогах, но нельзя требовать от оболочки больше того, что в нее заложено производителем.

Создание экстремальных условий эксплуатации коаксиального кабеля ведет, как правило, к накоплению печального опыта, а не к стабильной работе.

Субмагистральный и распределительный коаксиальные кабели с оболочкой из поливинилхлоридного пластиката зарубежных производителей кабельной продукции используются в основном для прокладки в помещениях и климатических условиях, соответствующих температурному диапазону данной оболочки.

В коаксиальных радиочастотных кабелях, предназначенных для преимущественной эксплуатации при воздействии низких температур или при резкой смене температур, применение поливинилхлоридного пластиката нежелательно.

Полиэтилены различных марок наиболее широко применялись для оболочек отечественного коаксиального радиочастотного кабеля.

Фактически, в изготовлении оболочек используется не чистый полиэтилен, а композиции полиэтилена, представляющие смесь нескольких модификаций исходного полиэтилена с добавкой стабилизаторов. Стабилизаторы повышают стойкость полиэтилена к тепловому старению.

В оболочке коаксиального радиочастотного кабеля для внешней прокладки, как правило, используется полиэтилен высокой плотности (низкого давления), для подземной прокладки — полиэтилен низкой плотности (высокого давления).

Высокоплотный полиэтилен стоек к абразивному износу и обеспечивает более надежную защиту от механических воздействий.

Поскольку чистый полиэтилен достаточно быстро стареет на свету и в нем появляются микротрещины, для защиты оболочек от ультрафиолетового облучения применяются композиции светостабилизированного полиэтилена, содержащего не менее 2,5% мелкодисперсной сажи. Светостабилизированный полиэтилен имеет черный цвет. Процент содержания мелкодисперсной сажи в полиэтиленовых оболочках коаксиального радиочастотного кабеля мировых производителей кабельной продукции гораздо выше общепринятого стандарта, что позволяет данному коаксиальному кабелю стабильно работать в климате Африки.

Полиэтиленовая оболочка, в сравнении с поливинилхлоридным пластикатом, имеет более широкий диапазон рабочих температур, менее критична к резкому перепаду температур.

Влагопоглощение оболочки из полиэтилена, по сравнению с поливинилхлоридной оболочкой, меньше в 20 раз.

Механические и эксплутационно-технологические свойства полиэтилена и поливинилхлоридного пластиката представлены в небольшой таблице:

С массовым приходом на наш рынок импортного коаксиального кабеля с оболочкой из поливинилхлоридного пластиката полиэтиленовая оболочка оказалась незаслуженно забытой и отодвинутой на второй план. Решающую роль в этом сыграли невысокие электрические характеристики отечественного коаксиального радиочастотного кабеля. Косвенно эти недостатки повлияли и на репутацию полиэтиленовой оболочки, которая, несмотря ни на что, с честью выдержала самый главный экзамен — проверку временем.

Стабильность параметров отечественного кабеля, выпущенного 10-15 лет назад, обеспечивается качеством примененных в нем материалов и, в первую очередь, полиэтиленовой оболочки, которая обеспечила и обеспечивает защиту этих материалов от воздействий внешней среды, несмотря на прошедшие годы.

В свете вышеизложенного, полиэтиленовая оболочка коаксиального радиочастотного кабеля представляется наиболее предпочтительной для использования в климатических условиях России.

Заявления о том, что коаксиальный радиочастотный кабель с полиэтиленовой оболочкой трудно прокладывать, что на него невозможно установить соединители, имеют в основе своей определенные пробелы в знании технологических приемов и инструментов, используемых при монтажных работах с коаксиальным кабелем.

Пробелы эти легко устранимы, а результаты, полученные от применения полиэтиленовой оболочки, окупают затраты на устранение данных пробелов.

При низкой температуре окружающей среды коаксиальный кабель в полиэтиленовой оболочке выдерживается в помещении с комнатной температурой. Сам монтаж требует определенной подготовки, места установки, чтобы до минимума сократить время воздействия низкой температуры на коаксиальный кабель и монтажника. При монтаже соединителей на полиэтиленовую оболочку применяют инструмент, позволяющий уменьшить трудозатраты и значительно сократить время монтажа.

Ведущие мировые компании, производящие кабельную продукцию, тщательно отслеживают тенденции российского рынка. Сейчас в линейке продукции, поставляемой, каждой из них присутствует коаксиальный радиочастотный кабель различных стандартов с полиэтиленовой оболочкой.

Время показало, что полиэтиленовая оболочка коаксиального радиочастотного кабеля оказалась востребована нашим профессиональным рынком.

Известным Производителем, выпускающим кабель с данными характеристиками, является компания Helukabel.
Не содержащие галогенов коаксиальные кабели используются для передачи высокочастотных сигналов в различной электронной аппаратуре, особенно в трансмиттерах и ресиверах, компьютерах, в производственной и бытовой электронике, там, где необходимо избежать распространения пожара в результате возгорания. Различные механические, температурные и электрические характеристики коаксиальных кабелей позволяют использовать их для передачи сигналов вплоть до гигагерцового диапазона.

Технические характеристики кабеля представлены ниже по ссылкам.

Поделиться