Частота пульсаций в нагрузке r. Как уменьшить пульсацию выпрямленного напряжения

Напряжение, получаемое от выпрямителей, является не постоянным, а пульсирующим. Оно состоит из постоянной и переменной составляющих. Чем больше переменная составляющая по отношению к постоянной, тем больше пульсация и хуже качество выпрямленного напряжения.

Переменная составляющая формируется гармониками. Частоты гармоник определяются равенством

f(n) = kmf ,

где k – номер гармоники, k = 1, 2, 3, …, m – количество пульсов выпрямляемого напряжения, f – частота напряжения сети.

Качество выпрямленного напряжения оценивается коэффициентом пульсации p , который зависит от среднего значения выпрямленного напряжения и амплитуды основной гармоники в нагрузке.

Порядок гармонических составляющих n = km, содержащихся в кривой выпрямленного напряжения, зависит лишь от числа пульсов и не зависит от конкретной . Гармоники минимальных номеров имеют наибольшую амплитуду.

Действующее значение напряжения гармонической составляющей порядка n зависит от среднего значения выпрямленного напряжения Ud идеального нерегулируемого выпрямителя:

В реальных схемах переход тока с одного диода на другой происходит в течение некоторого конечного промежутка времени, измеряемого долями и называемого углом коммутации . Наличие углов коммутации существенно увеличивает амплитуду гармоник. В результате растут пульсации выпрямленного напряжения .

Переменная составляющая выпрямленного напряжения, состоящая из гармоник низкой и высокой частоты, создает в нагрузке переменный ток, который оказывает мешающее воздействие на другие электронные устройства.

Для уменьшения пульсации выпрямленного напряжения между выходными зажимами выпрямителя и нагрузкой включают сглаживающий фильтр , который значительно ослабляет пульсацию выпрямленного напряжения за счет подавления гармоник.

Основными элементами сглаживающих фильтров являются (дроссели) и , а при небольших мощностях и транзисторы.

Работа пассивных фильтров (без транзисторов и других усилителей) основана на зависимости от частоты величины сопротивления реактивных элементов (катушки индуктивности и конденсатора). Реактивные сопротивления катушки индуктивности Xl и конденсатора Xc : Xl = 2πfL, Xc = 1/2πfC,

где f – частота тока, протекающего через реактивный элемент, L – индуктивность дросселя, С – eмкость конденсатора.

Из формул для сопротивления реактивных элементов следует, что с увеличением частоты тока сопротивление катушки растёт, а конденсатора уменьшается. Для постоянного тока сопротивление конденсатора равно бесконечности, а катушки индуктивности – нулю.

Отмеченная особенность позволяет катушке индуктивности беспрепятственно пропускать постоянную составляющую выпрямленного тока и задерживать гармоники. Причём, чем больше номер гармоники (выше её частота), тем эффективней она задерживается. Конденсатор наоборот полностью задерживает постоянную составляющую тока и пропускает гармоники.

Основным параметром, характеризующим эффективность работы фильтра, является коэффициент сглаживания (фильтрации)

q = p1 / p2 ,

где p1 – коэффициент пульсации на выходе выпрямителя в схеме без фильтра, p2 – коэффициент пульсации на выходе фильтра.

На практике применяются пассивные Г-образные, П-образные и резонансные фильтры. Наиболее широко используются Г-образные и П-образные, схемы которых приведены на рисунке 1

Рисунок 1. Схемы пассивных сглаживающих Г-образного (a) и П-образного (б) фильтров для уменьшения пульсации выпрямленного напряжения

Исходными данными для расчёта индуктивности дросселя фильтра L и ёмкости конденсатора фильтра C являются коэффициент пульсации выпрямителя, вариант схемного решения, а также требуемый коэффициент пульсации на выходе фильтра.

Расчёт параметров фильтра начинают с определения коэффициента сглаживания. Далее необходимо произвольно выбрать схему фильтра и емкость конденсатора в ней. Ёмкость конденсатора фильтра выбирают из ряда ёмкостей, приведённого ниже.

На практике используют конденсаторы следующих ёмкостей: 50, 100, 200, 500, 1000, 2000, 4000 мкФ. Меньшие значения ёмкостей из этого ряда целесообразно применять при больших рабочих напряжениях, а большие ёмкости – при невысоких напряжениях.

Индуктивность дросселя в Г-образной схеме фильтра можно определить из приближённого выражения

для П-образной схемы –

В формулы ёмкость подставляется в микрофарадах, а результат получается в генри.

Фильтрация пульсаций выпрямленного напряжения

При построении аудиосистемы я обратил внимание на интересный факт, мной и другими слушателями было замечено, что на качество звучания аппаратуры влияет время суток, а точнее поздно вечером и рано утром звучание заметно лучше чем днем. В чем причина?!

Думаю, что не секрет, что наша бытовая электрическая сеть (ЭС) оставляет желать лучшего. Так повелось, что главный параметр ЭС, который отслеживают работники электростанций и обслуживающего персонала, это ее частота колебаний 50Гц, а что касается чистоты питающего напряжения и стабильности напряжения в наших домах так тут дела никому нет. Хотя последнее утверждение немного спорное, так как есть ГОСТ 13109-97 и технический регламент на параметры электрической сети. Я на собственном опыте почувствовал отход от параметров установленных в ГОСТ по электропитанию, когда мой ЦАП отказывался стабильно работать и это понятно, так как напряжение в ЭС снижалось до 180В, это хорошо отслеживалось по снижению яркости свечения ламп накаливания в доме. Все дело в том, что я живу в частном доме и для меня не редкость, когда напряжение в сети падает до 20%. Еще один недостаток ЭС был в том, что частые сварочные и другие работы соседей тоже вносили свою лепту в "экологию" питания аппаратуры.

Частично решить эту проблему можно с помощью стабилизатора напряжения, но он не спасет от загрязненного питания, так как автотрансформатор в составе этих устройств не способен работать в качестве фильтра НЧ.
Мои поиски необходимых устройств не дали желаемого результата, так как тема посвященная чистоте ЭС освещается крайне редко и на форумах по радиоэлектронике тоже мало информации. В продаже есть регенераторы питания, но они либо сильно дороги или часто сделаны на основе ИБП. Достоинство данных изделий перекрывается их недостатком, а именно большим шумом импульсного преобразователя и сильный отход от формы синусоиды выходного сигнала.

После некоторых размышлений, я решил разработать собственный регенератор сетевого питания (РСП), удовлетворяющий моим требованиям, а именно:

  1. Стабильность напряжения питания 230В c точностью не хуже 2% (при нагрузке 40Вт)
  2. Выходная мощность РСП 60-100Вт (вполне достаточно для питания источника звука)
  3. Коэффициент гармонических составляющих на активной нагрузке 40Вт не более 0,5% (в то время как в бытовой ЭС этот параметр примерно равен 5%)
  4. Стабильность частоты питающего напряжения (частота задающего генератора 100Гц) ± 0,5%
  5. Гальваническая развязка с ЭС
  6. Низкий акустический уровень шума.

Сразу поясню, что 100Гц частота была выбрана неслучайно. Определяющим фактором послужил оптимальный режим работы нагрузки РСП на этой частоте, а именно звуковоспроизводящая аппаратура или ЦАП как в моем варианте.

Дело в том, что при повышения частоты напряжения питания силовых трансформаторов подключаемых устройств к РСП происходит улучшение режима их работы, а именно:

  1. Облегчается работа питающего трансформатора
  2. Снижается магнитная индукция трансформатора, что приводит к снижению рассеивания магнитного поля, а также отсутствия постоянного напряжения насыщения железа трансформатора в питающем устройстве и как следствие создается более благоприятное условие его работы.

Все это способствует к улучшению звуковых свойств питаемой аппаратуры, но об этом ниже.
Еще одно преимущество частоты питания 100Гц это улучшение работы выпрямителя питающего устройства, так как после диодного моста пульсирующие напряжения получается в 2 раза чаще чем при питании непосредственно от бытовой сети 220В 50Гц и оно равно 200Гц. А из теории известно, что при увеличении частоты пульсации напряжения емкость сглаживающего фильтра после него можно уменьшить так как конденсатору легче сгладить пульсации выпрямленного напряжения большей частоты. Кстати этим обусловлено меньшая емкость сглаживающего конденсатора в импульсных блоках питания.

Ниже приведена схема для измерения пульсаций рис. 1 и осциллограммы, которые показывают процесс работы диодного моста с отключенный конденсатором C1 с частотой питания 50Гц рис. 2а и с частотой питания 100Гц рис. 2б.

Рис. 1 Схема для измерения пульсаций


Рис. 2а Процесс работы диодного моста без сглаживающего конденсатора C1 c частотой питания 50Гц


Рис. 2б Процесс работы диодного моста без сглаживающего конденсатора C1 c частотой питания 100Гц

Ниже приведены осциллограммы работы схемы измерения пульсаций на нагрузке с конденсатором C1при напряжении питания с частотой 50Гц рис 3а, а также 100Гц рис. 3б.


Рис. 3а Напряжение пульсации на нагрузке при питании схемы напряжением с частотой 50Гц


Рис. 3б Напряжение пульсации на нагрузке при питании схемы напряжением с частотой 100Гц

Из рис. 3а и рис.3б, видно, что при питании фильтра с нагрузкой частотой в два раза выше, пульсации снижаются в 1,65раза
Пульсации при 100Гц получаются 3,34V/2,02V = 1,65 раза меньше чем при питании от ЭС 50Гц.

Вернемся непосредственно к схеме РСП, в качестве генератора синусоидального напряжения я использовал мост Вина, а в качестве УМ применил схема на полевых транзисторах с выходной мощностью порядка 100Вт этого вполне достаточно для моих нужд. В блоке питания РСП применен трансформатор 250Вт и диодный мост с блоком фильтра общей емкостью 39600мкф, что является более чем достаточно для данного решения. Схема блока питания представлена на рис.4


Рис. 4 Блок питания РСП

Принцип работы РСП следующий:
При включении питания РСП происходит заряд емкостей БП и становление рабочего режима генератора синусоидальных колебаний рис.6, в это время работает soft-start создавая задержку подачи входного сигнала с генератора на УМ с помощью контактов реле замыкающих цепь выхода генератора и входа УМ.

Время работы схемы soft-start рис. 5, задается с помощью цепи R2, С4 и рассчитывается по формуле r=R2(Mom)xC4(mkF)=t(секунд).


Рис. 5 Схема Soft-start

По истечении времени установленного в схеме soft-start 2секунды в моем варианте, выходные усиленные колебания в УМ с частотой 100Гц подаются на повышающий трансформатор Тр1.

Намоточные данные повышающего трансформатора Тр1 следующие:
Магнитопровод марки ОЛ55/100-40.
Габаритная мощность магнитопровода Pгаб. = 227Вт
Число витков в первичной обмотке w1=30витков, провод ПЭВ2 1,2мм
Число витков во вторичной обмотке w2=600витков, провод ПЭВ2 0,51мм

Рассмотрим работу генератора синусоидальных колебаний.
Схема генератора представлена на рис. 6. Данная схема представляет собой генератор синусоидального напряжения. Цепь R1, C1 и R2, C2 задает частоту колебаний, с указанными элементами на схеме эта частота равна 50Гц, для лучшей симметрии эти элементы должны быть достаточно точные, не хуже ±1%. Резистор R19 необходим для регулировки амплитуды выходного сигнала.


Рис. 6 Генератор синусоидальных колебаний

После генератора синуса следует УМ для РСП, его схема представлена на рис. 7


Рис.7 Усилитель мощности для РСП

Как видно из схемы, в состав УМ входит микросхема DA1, это ОУ от которого особенно зависит уровень искажений всего усилителя, по этой причине в данном схеме желательно ставить ОУ с низкими шумами, например NE5534 с уровнем шума 5nV√Hz. Транзисторы VT1 и VT2 необходимы для предварительной раскачки сигнала по току необходимого для выходных транзисторов VT3, VT4. Ток холостого хода задается подстроечным резистором R5, в моем варианте он равен 20mA.
Вообще в качестве УМ для этих целей идеально подходит УМ в классе "D". Его неоспоримые преимущества, а именно малое рассеивание энергии на тепло (высокий КПД) и как следствие меньшие масса и габариты делают его предпочтительнее в этой схеме. Но у таких схем есть недостатки, это дополнительная сложность намотки трансформаторов и настройки усилительного каскада. Поэтому мной было решено сделать УМ по классической схеме с минимальным током покоя для данной схемы, порядка 20мА.

Ниже приведена форма сетевого напряжения в ЭС рис.8а и после РСП рис.8б на активной нагрузке 40Вт, а также спектрограммы гармонических искажений непосредственно в ЭС рис. 9а и после РСП рис.9б.


Рис. 8а Форма напряжения в бытовой ЭС слева и его спектрограмма справа


Рис. 8б Форма сетевого напряжения на выходе трансформатора РСП слева и его спектрограмма справа

Из осциллограмм и спектрограмм видно, что РСП обладает заметно лучшим качеством синусоидального напряжения. Еще один плюс данного устройства как было описано выше, отсутствие подмагничивания на питающей стороне, так как согласующий трансформатор не способен пропустить постоянную составляющую.
Гальваническая развязка выходным трансформатором также улучшает ситуацию питания аппаратуры. Дело в том, что многие пренебрегают фазировкой питающих трансформаторов аудиоаппаратуры. По моему мнению, фазировать необходимо каждый силовой трансформатор, особенно в аппаратуре без заземления, так как при неправильной фазировке силовых трансформаторов, например УМ и источника звука (ЦАП, проигрыватель) происходит перетекание токов по оплетке межблочного кабеля с частотой 50Гц. Это легко проверить с помощью цифрового мультиметра хорошей чувствительности, для этого необходимо замерить переменное напряжение на корпусе включенного прибора относительно заземления на каждом аппарате отдельно, предварительно отключив от него все соединительные провода, кроме питающих.

При неправильной фазировке силовых трансформаторов, звучание аппаратуры ухудшается. Многие солидные производители аудиоаппаратуры в своих устройствах используют индикаторы правильного включения фазы.


Рис. 9 Фотографии РСП в сборе

Заключение

Регенераторы сетевого питания действительно улучшают звучание аудиосистемы, так как качественное питания источника звука (ЦАП, проигрывателя) очень сильно сказывается на его работу, ведь именно источник звука имеет наибольшее разрешение во всей системе, а этот параметр сложно реализуем с плохим питанием. Также я хотел отметить, что данное устройство можно использовать и для других целей, например как стабилизатор переменного напряжения. Один мой знакомый использовал схемотехнику РСП для питания двигателя переменного тока в проигрывателе виниловых пластинок, так как в его двигателе частота вращения ротора прямо зависела от частоты питающего напряжения и он подстраивал точные обороты двигателя с помощью перестройки частоты генератора синусоидального напряжения.

Смирнов Алексей Николаевич (), e-mail: [email protected]

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Рис. 1 Схема для измерения пульсаций
VD1 Диодный мост 1 В блокнот
С1 47 мкФ 1 В блокнот
R1 Резистор

75 Ом

1 В блокнот
Генератор 1 В блокнот
Осциллограф 1 В блокнот
S1 Выключатель 1 В блокнот
Рис. 4 Блок питания РСП
VR1 Линейный регулятор

LM7815

1 В блокнот
VR2 Линейный регулятор

LM7915

1 В блокнот
VD1-VD4 Диод 20ETS08 4 В блокнот
VD1-VD4 Выпрямительный диод

DF08MA

8 В блокнот
С1-С4 Электролитический конденсатор 2200 мкФ 4 В блокнот
С5, С8 Конденсатор 100 нФ 2 В блокнот
С6, С7 Электролитический конденсатор 470 мкФ 2 В блокнот
С9-С16 Электролитический конденсатор 4700 мкФ 8 В блокнот
С17, С18 Электролитический конденсатор 1000 мкФ 2 В блокнот
С19, С20 Конденсатор 1 мкФ 2 В блокнот
R1, R2, R5, R6 Резистор

10 Ом

4 В блокнот
R3, R4, R7, R8 Резистор

100 Ом

4 В блокнот
R9-R12 Резистор

0.5 Ом

4 5 Вт В блокнот
T1 Трансформатор 250 Вт 1 В блокнот
T2 Трансформатор 20 Вт 1 В блокнот
S1 Выключатель 1 В блокнот
Вилка сетевая 1 В блокнот
XT1, XT2 Разъем 2 В блокнот
Разъем Gen Power 1 В блокнот
Рис. 5 Схема Soft-start
D1 Программируемый таймер и осциллятор

NE555

1 В блокнот
D1 Микросхема MC14069U 1 В блокнот
VR1 Линейный регулятор

LM7812

1 В блокнот
VT1 Биполярный транзистор

КТ972А

1 В блокнот
VD1-VD4 Диодный мост

DF08S

1 В блокнот
VD5 Выпрямительный диод

1N4007

1 В блокнот
С1 Электролитический конденсатор 2200 мкФ 1 В блокнот
С2 Электролитический конденсатор 470 мкФ 1 В блокнот
С3, С5, С6 Конденсатор 100 нФ 3 В блокнот
С4, С7 Электролитический конденсатор 47 мкФ 2 В блокнот
R1 Резистор

330 Ом

1 подбор В блокнот
R2 Переменный резистор 200 кОм 1 В блокнот
R3 Резистор

100 Ом

1 В блокнот
R4, R5 Резистор

10 кОм

2 В блокнот
R6 Резистор

220 Ом

1 В блокнот
Rel1 Реле 1 В блокнот
Рис. 6 Генератор синусоидальных колебаний
D1 Операционный усилитель

TL072

1 В блокнот
VT1 MOSFET-транзистор

BF245A

1 В блокнот
VD1, VD2 Диод 2 В блокнот
VD3 Стабилитрон 1N750 1 В блокнот
С1-С3 Конденсатор 0.22 мкФ 3 В блокнот
С4 Электролитический конденсатор 2.2 мкФ 1 В блокнот
С5 Конденсатор 1 мкФ 1 В блокнот
С6, С7 Электролитический конденсатор 220 мкФ 16 В 2 В блокнот
С8, С9 Конденсатор 0.1 мкФ 2 В блокнот
R1, R2, R7 Резистор

5.1 кОм

3 В блокнот
R3 Резистор

4.7 кОм

1 В блокнот
R4, R11 Резистор

2 кОм

2 В блокнот
R5 Резистор

62 кОм

1 В блокнот
R6 Резистор

8.2 кОм

1 В блокнот
R8 Резистор

36 кОм

1 В блокнот
R9 Резистор

1 МОм

1 В блокнот
R10 Резистор

68 кОм

1 В блокнот
R12, R13 Резистор

100 Ом

2 В блокнот
R19 Переменный резистор 22 кОм 1 В блокнот
Разъем Gen signal 1 В блокнот
Разъем Gen power 1 В блокнот
Рис.7 Усилитель мощности для РСП
DA1 Операционный усилитель

TL071

1 В блокнот
VR1 Линейный регулятор

LM7812

1 В блокнот
VR2 Линейный регулятор

LM7912

1 В блокнот
VT1 Биполярный транзистор

КТ815А

1 В блокнот
VT2 Биполярный транзистор

Расчёт фильтров для ШИМ

В статье речь пойдёт про расчёт простейших фильтрующих цепей для сглаживания широтно-импульсной модуляции. Что такое ШИМ, где он применяется и как его реализовать читайте в отдельной статье.

Первое, на чём следует заострить внимание - это назначение цепи, для которой вы собрались строить фильтр. Немного упрощая схемы с ШИМ можно поделить на два типа:

Примером сигнального ШИМ служит, например, простейший ЦАП, под силовым ШИМ чаще всего имеется ввиду ШИМ-сигнал на выходе силовых ключей, например в импульсных источниках питания (ИИП). Строго говоря, в источниках питания сам сигнал ШИМ тоже используется в сигнальной цепи (управление транзисторами) и на выходе таких источников сигнал повторяет форму управляющих сигналов, однако имеет более высокую мощность, потому они требуют фильтров позволяющих пропускать большие мощности.

Фильтрация ШИМ в сигнальных цепях

Для простых сигнальных цепей с высокоомной нагрузкой наиболее оптимальной схемой фильтрации является интегрируюшая RC-цепочка, являющаяся по сути простейшим фильтром нижних частот. Понятие "интегрирующая RC-цепь" применяется при рассмотрении импульсных характеристик данной цепи.

Рис.1. Простейший фильтр нижних частот - интегрирующая RC-цепь и её АЧХ.


Основная характеристика фильтра это частота среза (на рисунке 1 обозначена угловая частота среза - ω с ) - амплитуда колебаний данной данной частоты на выходе фильтра ослабляется до уровня ~0.707 (-3 Дб) от входного значения. Частота среза определяется по следующей формуле:

Тут R и С - сопротивление резистора в омах и ёмкость конденсатора в фарадах. Необходимо помнить, что для корректной работы сглаживающего фильтра постоянная времени RC-цепочки (τ = R · C ) должна быть как можно меньше периода ШИМа, тогда за один период не будет происходить полный заряд-разряд конденсатора.

Следующий важный параметр, позволяющий расчитать ослабление колебаний на заданной частоте это коэффициент передачи фильтра - это отношение K = U вых /U вх. Для данной RC-цепочки коэффициент передачи рассчитывается следующим образом:


Зная эти формулы и учтя постоянное падение напряжения на резисторе можно приближённо рассчитать фильтр с нужными характеристиками - например, задавшись имеющейся ёмкостью, либо необходимым уровнем пульсаций.

Калькулятор ШИМ-фильтра на RC-цепочке

Обратите внимание - если вы хотите получать из ШИМ-сигнала сглаженный синусоидальный сигнал, необходимо чтобы частота среза фильтра была выше максимальной частоты сигнала, а значит частота ШИМ должна быть ещё выше.

Фильтрация ШИМ в силовых цепях

В силовых цепях, при низких сопротивлениях нагрузки (например обмотки электродвигателей), потери в резисторе фильтра становятся весьма существенны, поэтому в подобных случаях применяются ФНЧ на индуктивностях и конденсаторах.


Рис.2. Фильтр нижних частот на LC-контуре и его АЧХ.


LC-фильтр представляет из себя элементарный колебательный контур, который имеет собственную частоту резонанса, поэтому его реальная АЧХ будет несколько отличаться от АЧХ, приведённой на рисунке 2.

Поскольку речь в данной статье идёт о фильтре для силовых цепей, при расчёте фильтра нужно учитывать, что основная гармоника входящего напряжения тоже должна ослабляться фильтром, следовательно, его резонансная частота должна быть ниже частоты ШИМ.

Формула для расчёта частоты резонанса LC-контура:

f = 1/(2 · π · (L · C) 0.5)


Если частота резонанса контура совпадёт с частотой ШИМ, LC-контур может перейти в режим генерации, тогда на выходе может случиться конфуз, посему предлагаю вам данного недоразумения тщательно избегать. Кроме того, при проектировании данного фильтра есть ещё несколько нюансов, которые неплохо бы соблюдать для получения желаемого результата, а именно:
  1. Для исключения резонансных явлений на одной из высокочастотных гармонических составляющих ёмкость конденсатора желательно находить из условия равенства волнового сопротивления фильтра сопротивлению нагрузки:
  2. Для сглаживания пульсаций таким фильтром желательно, чтобы ёмкостное сопротивление конденсатора для низшей частоты пульсации было как можно меньше сопротивления нагрузки, а также много меньше индуктивного сопротивления дросселя для первой гармоники.
Комплексный коэффициент передачи LC-фильтра рассчитывается по следующей формуле:


где n - номер гармонической составляющей входного сигнала, i - мнимая единица, ω = 2πf, L - индуктивность дросселя (Гн), C - ёмкость конденсатора (Ф), R - сопротивление нагрузки (Ом).

Из формулы очевидно, что чем выше гармоника, тем лучше она подавляется фильтром, следовательно, достаточно рассчитывать уровень только для первой гармоники.

Чтобы перейти от комплексного представления коэффициента передачи к показательному, нужно найти модуль комплексного числа. Для тех, кто (как и я) спал на парах матана в институте, напомню, модуль комплексного числа считается очень просто:

Нормальная работа всех активных элементов радиоэлектронной аппаратуры - транзисторов, тиристоров и микросхем -рассчитана на питание постоянным напряжением. Но такие источники тока, как батареи сухих элементов и аккумуляторы, недолговечны, расходуют запасенную ими электрическую энергию и поэтому нуждаются в периодической замене или подзаряде. Отсюда химические источники электрической энергии могут считаться приемлемыми исключительно для питания носимой аппаратуры или аппаратуры, эксплуатируемой в условиях отсутствия постоянных источников тока. Питание стационарной профессиональной и бытовой аппаратуры удобнее осуществлять от сети переменного тока, используя для этого преобразователь переменного напряжения в постоянное. Таким преобразователем и является выпрямитель.

Различные транзисторы, микросхемы и другие приборы рассчитаны на питание разными напряжениями, поэтому наличие в электросети именно переменного напряжения оказывается очень удобным, так как при помощи трансформатора на его вторичных обмотках из стандартного напряжения сети 220 В легко можно получить любые другие значения напряжений. Получить же различные напряжения при наличии сети постоянного тока оказалось бы значительно сложнее.

Простейшим выпрямительным устройством является од-нополупериодный выпрямитель, схема которого приведенная на рис. 35. Ее отличительной особенностью является то, что диод пропускает ток только в течение одной половины периода переменного напряжения, когда оно положительно

на верхнем по схеме выводе вторичной обмотки трансформатора. Поэтому схема и называется однополупериодной.

Если бы параллельно нагрузке R не был подключен конденсатор С, форма напряжения на нагрузке была бы такой, как показано штриховой линией, и напряжение вместо постоянного на нагрузке было бы пульсирующим. Конденсатор сглаживает пульсации выпрямленного напряжения. После включения при первом же положительном полупериоде конденсатор быстро заряжается. Ток заряда течет по вторичной обмотке трансформатора через открытый диод, конденсатор и обратно к вторичной обмотке. Сопротивление этой цепи мало и определяется сопротивлением обмотки и открытого диода. Поэтому заряд конденсатора происходит быстро. В точке А напряжение заряженного конденсатора почти равно напряжению на обмотке, а в дальнейшем оказывается больше его, из-за чего диод запирается и заряд конденсатора прекращается.

Теперь начинается разряд конденсатора на нагрузку R. Сопротивление нагрузки значительно больше, чем сопротивление цепи


заряда. Поэтому разряд конденсатора происходит медленно, до точки Б, когда напряжение на обмотке трансформатора вновь становится больше напряжения на конденсаторе, и вновь начинается его заряд. Результирующее напряжение на конденсаторе и нагрузке показано сплошной линией. Оно содержит постоянную составляющую (собственно выпрямленное напряжение) и переменную составляющую, которая называется напряжением пульсаций. Очевидно, что чем меньше сопротивление нагрузки (или чем больше потребляемый нагрузкой от выпрямителя ток), тем больше амплитуда пульсаций и меньше выпрямленное напряжение, так как в таком режиме точка Б будет располагаться ниже. Чем больше емкость конденсатора, тем медленнее он станет разряжаться и тем меньше будет амплитуда пульсаций и больше выпрямленное напряжение. Поэтому в схемах выпрямителей используют электролитические конденсаторы большой емкости.

Наибольшее выпрямленное напряжение определяется амплитудой переменного напряжения на вторичной обмотке трансформатора. По этой причине рабочее напряжение конденсатора должно быть не менее этого значения напряжения.

Выбор диода в этой схеме связан со следующими требованиями. Средний выпрямленный ток диода равен току нагрузки. Прямой импульсный ток диода равен отношению амплитуды напряжения на вторичной обмотке трансформатора к сопротивлению этой обмотки. Наконец, во время отрицательного полупериода к диоду прикладывается обратное напряжение, равное удвоенной амплитуде напряжения на вторичной обмотке.

Недостаток однополупериодной схемы выпрямления очевиден: из-за большого промежутка времени между моментами А и Б, который несколько превышает половину периода, конденсатор успевает заметно разрядиться, что приводит к повышенной амплитуде пульсаций выпрямленного напряжения. Дальнейшее сглаживание этих пульсаций затруднено тем, что частота пульсаций равна частоте сети питающего напряжения 50 Гц. В связи с этим выпрямители, собранные по однополупериодной схеме, используются лишь при больших сопротивлениях нагрузки, то есть при малом токе потребления,

когда постоянная времени разряда конденсатора велика и он не успевает заметно разряжаться за время отрицательных полупериодов напряжения.

Указанные недостатки выражены слабее в двухполупери-одной схеме выпрямления, которая показана на рис. 36. Здесь

используются два диода и вдвое увеличена вторичная обмотка трансформатора, оснащенная средней точкой. В течение одного полупериода конденсатор заряжается через один диод, а второй в это время заперт, в течение второго полупериода второй диод отпирается, а первый заперт. Форма напряжения на нагрузке при отсутствии конденсатора показана штриховой линией, а при наличии конденсатора - сплошной. Время, в течение которого конденсатор разряжается, уменьшено в этой схеме более чем вдвое. По этой причине выпрямленное напряжение получается больше, а амплитуда пульсаций значительно меньше, чем при использовании однополупериодного выпрямителя. Существенно также и то, что частота пульсаций вдвое превышает частоту питающей сети и составляет 100 Гц, что значительно облегчает последующее их сглаживание.

Несмотря на указанные преимущества, двухполупериодная схема выпрямления со средней точкой обладает и недостатками, к которым относятся услож-нениетрансформатора, а также



невозможность создания двух совершенно одинаковых половин вторичной обмотки. Это приводит к тому, что амплитуды напряжений на половинах вторичной обмотки оказываются разными. В связи с тем, что конденсатор заряжается попеременно от каждой из половин вторичной обмотки, в составе пульсаций выпрямленного напряжения появляется составляющая с частотой 50 Гц, хотя она и меньше, чем при однополу-периодном выпрямлении. Двухполупериодная схема выпрямителей широко использовалась в эпоху ламповой техники, когда применялись двуханодные кенотроны с общим катодом. Их оказывалось удобно применять в такой схеме, где катоды диодов соединены и для обоих диодрв можно использовать одну обмотку накала. У полупроводниковых диодов отсутствует подогреватель и с их внедрением двухполупериодная схема со средней точкой вторичной обмотки трансформатора, потеряв указанное преимущество, оказалась полностью вытесненной мостовой схемой выпрямления, которая в устаревшей литературе называется схемой Греца.

Мостовая схема выпрямителя показана на рис. 37. Вместо двух диодов она содержит четыре, но зато не нуждается в удвоении вторичной обмотки трансформатора. В течение одной половины периода переменного тока ток проходит от верхнего по схеме вывода вторичной обмотки через диод VD2, нагрузку, через диод VD3 к нижнему выводу вторичной обмотки. В течение следующей половины периода ток проходит от нижнего вывода обмотки через диод VD4, нагрузку, через диод VD1 к верхнему выводу вторичной обмотки трансформатора. Таким образом, в течение обоих полупериодов в нагрузке протекает ток одного и того же направления и диодами выпрямляется одно и то же переменное напряжение вторичной обмотки. Благодаря этому в составе пульсации составляющая с частотой 50 Гц отсутствует.

Мостовая схема выпрямления также является двухполупе-риодной. Форма напряжения на нагрузке в этой схеме оказывается такой же, как и в двухполупериодной схеме со средней точкой. Рабочее напряжение конденсатора также равняется амплитуде переменного напряжения на вторичной обмотке. Однако требования к диодам в обеих двухполупериодных схемах отличаются от требований в однополупериодной схеме.


Рис. 37. Мостовая схема выпрямления

В связи с тем, что ток нагрузки проходит через диоды поочередно, средний выпрямленный ток каждого диода равен половине тока нагрузки.

Обратные напряжения на диодах мостовой схемы равны не удвоенной, а одинарной амплитуде напряжения вторичной обмотки. Обратные напряжения на диодах двухполупериодной схемы со средней точкой и значения импульсных токов обеих схем такие же, как и в однополупериодной схеме. Однако ток вторичной обмотки трансформатора в мостовой схеме равен по своему эффективному значению току нагрузки, что вдвое больше, чем в однополупериодной схеме и в схеме со средней точкой. Поэтому сечение провода вторичной обмотки трансформатора в мостовой схеме должно быть в два раза больше, чем в двух других (диаметр провода - в 1,41 раз больше).

Удвоение количества диодов в мостовой схеме с лихвой окупается вдвое уменьшенным количеством витков вторичной обмотки трансформатора и уменьшением пульсаций выпрямленного напряжения. Для упрощения монтажа мостовых схем промышленностью выпускаются готовые сборки из четырех одинаковых диодов в одном корпусе, которые уже соединены между собой по схеме моста. К таким сборкам, например, относятся сборки типа КД906 со средним выпрямленным током до 400 мА и обратным напряжением до 75 В.

Недостатком мостовой схемы является прохождение выпрямленного тока последовательно через два диода. Падение напряжения на открытом кремниевом диоде достигает 1 В, а на двух последовательно включенных диодах падение напряжения при максимальном прямом токе составляет 2 В. Если выпрямитель рассчитан на низкое выпрямленное напряжение,

которое соизмеримо с падением напряжения на диодах, требуется увеличение напряжения на вторичной обмотке трансформатора. Это необходимо учитывать при расчете выпрямителя.

Если необходимо получить выпрямленное напряжение, которое превышает амплитудное значение напряжения на вторичной обмотке трансформатора, можно использовать однополупериодную схему удвоения выпрямленного напряжения, приведенную на рис. 38. В течение первого полупериода, когда ток вторичной обмотки направлен по схеме сверху вниз, открыт диод VD1 и заряжается конденсатор С1,


Рис. 38. Схема однополупериодного удвоения напряжения

как в схеме однополупериодного выпрямителя. В течение второго полупериода ток вторичной обмотки протекает снизу вверх. Диод VD1 заперт, и отпирается диод VD2. Теперь конденсатор С2 заряжается суммарным напряжением вторичной обмотки трансформатора и напряжением заряженного конденсатора С1, которые соединены согласно. Благодаря этому на конденсаторе С2 образуется удвоенное напряжение. Рабочее напряжение конденсатора С1 равно амплитуде, а рабочее напряжение конденсатора С2 - удвоенной амплитуде напряжения вторичной обмотки трансформатора. Обратные напряжения обоих диодов равны удвоенной амплитуде напряжения вторичной обмотки. Частота пульсаций равна частоте сети - 50 Гц.

Удвоенное напряжение на конденсаторе С2 и низкая частота пульсаций являются недостатком данной схемы. Кроме того, во время заряда конденсатора С2 конденсатор С1 быстро разряжается током заряда конденсатора С2. Во избежание резкого увеличения пульсаций и уменьшения выпрямленного напряжения приходится выбирать емкость С1 значительно больше

емкости С2. Поэтому, если использование этой схемы не диктуется построением остальной схемы блока питания, лучше приме нять другую схему удвоения напряжения, показанную на рис. 39.

Здесь за один полупериод заряжается через диод один конденсатор, а в течение второго полупериода через второй диод заряжается второй конденсатор. Выходное выпрямленное напряжение снимается с обоих конденсаторов, включенных последовательно и согласно. Каждый конденсатор

заряжается по схеме однопо-лупериодного выпрямителя, но суммарное напряжение оказывается двухполупериодным, разряд конденсаторов происходит только через нагрузку, поэтому частота пульсаций вдвое больше частоты питающей сети, а форма выходного напряжения аналогична форме у двухполупериодного выпрямителя. Выходное напряжение почти равно удвоенной амплитуде напряжения вторичной обмотки. Рабочее напряжение обоих конденсаторов равно амплитуде этого напряжения. Обратное напряжение на каждом диоде равно удвоенной амплитуде. Таким образом, использование этой схемы выгоднее, чем схемы, показанной на рис. 38.

Интересно заметить, что при постоянном значении напряжения на вторичной обмотке трансформатора мостовая схема обеспечивает получение выпрямленного напряжения в два раза большего, а схема удвоения напряжения (см. рис. 39) -в четыре раза большего, чем двухполупериодная схема со средней точкой. Следует упомянуть, что в устаревшей литературе схема удвоения напряжения, приведенная на рис. 39, называется схемой Латура.

Рассмотрим еще две схемы выпрямителей с умножением напряжения. На рис. 40 приведена схема выпрямителя с учетве-рением напряжения, построенная по тому же принципу, что и схема, приведенная на рис. 38. В течение одного полупериода заряжаются конденсаторы С1 напряжением обмотки и СЗ суммой напряжения обмотки и заряженного конденсатора С2 минус напряжение на С1; при этом С2 разряжается.


Конденсатор С1 заряжается до амплитуды, а СЗ - до удвоенной амплитуды напряжения на обмотке. В течение следующего полупериода заряжаются С2 суммарным напряжением на обмотке и на С1, а также С4 суммой напряжений на обмотке, на С1 и на СЗ минус напряжение на С2; при этом С1 и СЗ разряжаются. Оба конденсатора С2 и С4 заряжаются до удвоенной амплитуды напряжения на обмотке. Результирующее напряжение снимается с соединенных последовательно и согласно конденсаторов С2 и С4. Частота пульсаций выпрямленного напряжения в этой схеме составляет, как и в схеме на рис. 38, 50 Гц.


Рис. 40. Схема однополупериодного умножения напряжения

На рис. 41 показана двухполупериодная схема учетверения напряжения, подобная схеме, приведенной на рис. 39. Принцип ее действия читатель может рассмотреть самостоятельно по аналогии с предыдущими схемами. Здесь частота пульсаций составляет 100 Гц, и два конденсатора С1 и СЗ работают при напряжении, равном одинарной амплитуде напряжения вторичной обмотки трансформатора вместо одного конденсатора С1 в схеме на рис. 40. При одинаковом количестве элементов эта схема выгоднее предыдущей.

Достоинством схемы, изображенной на рис. 40, является возможность умножения напряжения в нечетное число раз. Так, если удалить конденсатор С4 и подключенный к нему диод, а выпрямленное напряжение снимать с конденсаторов С1 и СЗ, получится утроенное напряжение. Схема же, показанная на рис. 41, позволяет получать только выпрямленное напряжение в четное число раз большее напряжения на вторичной обмотке трансформатора.


Рис. 41. Схема двухполупериодного умножения напряжения

Выпрямление с умножением напряжения не ограничивается его учетверением; подключая дополнительные цепочки, состоящие из диода и конденсатора, можно увеличивать коэффициент умножения. Часто требуется получить высокое выпрямленное напряжение, измеряемое киловольтами. Для достижения этой цели имеются два пути: либо намотать высоковольтную вторичную обмотку трансформатора и выпрямить полученное с нее высокое напряжение простым выпрямителем, либо использовать схему умножения. Второй способ целесообразнее. Высоковольтные обмотки трансформаторов имеют низкую надежность, так как необходимо тщательно изолировать их от других обмоток и от сердечника, а также хорошо изолировать слои этой обмотки один от другого. Кроме того, сама намотка высоковольтных обмоток весьма трудоемка: приходится наматывать тысячи витков очень тонким проводом, который при малейшем натяжении легко рвется. Наконец, выпрямитель требует применения высоковольтных конденсаторов и диодов с очень большим допустимым обратным напряжением. Выход находят путем последовательного соединения нескольких конденсаторов и нескольких диодов. Но тогда при том же количестве конденсаторов и диодов целесообразнее собрать выпрямитель с умножением напряжения, одновременно избавившись от необходимости намотки высоковольтной обмотки трансформатора.

Пациенты на приеме нередко интересуются, какая физическая нагрузка безопасна и полезна для их сердца. Чаще всего этот вопрос возникает перед первым посещением спортзала. Параметров для контроля максимальной нагрузки много, но один из самых информативных – пульс. Его подсчет определяет частоту сердечных сокращений (ЧСС).

Почему важно контролировать сердцебиение при нагрузке? Чтобы лучше понять это, сначала постараюсь доступно объяснить физиологические основы адаптации сердечно-сосудистой системы к физической активности.

Сердечно-сосудистая система при нагрузке

На фоне нагрузки возрастает потребность тканей в кислороде. Гипоксия (нехватка кислорода) служит сигналом для организма о том, что ему необходимо повышение активности сердечно-сосудистой системы. Основная задача ССС – сделать так, чтобы поступление кислорода в ткани покрывало его затраты.

Сердце это мышечный орган, выполняющий насосную функцию. Чем активнее и результативнее оно перекачивает кровь, тем лучше органы и ткани обеспечены кислородом. Первый путь увеличения кровотока – ускорение работы сердца. Чем выше ЧСС, тем больший объем крови оно может «перекачать» за определенный промежуток времени.

Второй путь адаптации к нагрузке – увеличение ударного объема (количества крови, выбрасываемого в сосуды за одно сердечное сокращение). То есть, улучшение «качества» работы сердца: чем большим объем камер сердца занимает кровь, тем выше сократимость миокарда. За счет этого сердце начинает выталкивать больший объем крови. Указанное явление называется законом Франка-Старлинга.

Расчет пульса для разных зон нагрузки

По мере увеличения пульса при нагрузке организм претерпевает разные физиологические изменения. На этой особенности основаны расчеты ЧСС для разных пульсовых зон в спортивных тренировках. Каждая из зон соответствует проценту ЧСС от максимально возможного показателя. Их выбирают в зависимости от желаемой цели. Виды зон интенсивности:

  1. Терапевтическая зона. ЧСС – 50-60% от максимальной. Используется для укрепления сердечно-сосудистой системы.
  2. . 60-70%. Борьба с лишним весом.
  3. Зона силовой выносливости. 70-80%. Повышение устойчивости к интенсивным физическим нагрузкам.
  4. Зона совершенствования (тяжелая). 80-90%. Увеличение анаэробной выносливости – способности к длительным физическим нагрузкам, когда расход кислорода организмом выше, чем его поступление. Только для опытных спортсменов.
  5. Зона совершенствования (максимальная). 90-100%. Развитие спринтерской скорости.

Для безопасной тренировки сердечно-сосудистой системы используют пульсовую зону №1.

1. Сначала найти максимальную ЧСС (ЧССmax), для этого:

  • 220 – возраст (годы).
  • он находится от ЧССmax * 0,5 до ЧССmax * 0,6.

Пример расчета оптимального пульса для тренировки:

  • Пациенту 40 лет.
  • ЧССmax: 220 – 40 = 180 уд./мин.
  • Рекомендуемая зона №1: 180*0,5 до 180*0,6.

Расчет пульса для выбранной терапевтической зоны:

  1. 180*0,5 = 90
  2. 180*0,6 = 108

Целевой пульс при нагрузке для человека 40 лет должен нахожиться: от 90 до 108 уд./мин.

То есть нагрузки во время занятий нужно распределять так, чтобы частота пульса выписывалась в этот диапазон.

Возраст (годы) Рекомендованный пульс (уд./мин.)
Таблица с оптимальной частотой пульса для тренировки сердечно-сосудистой системы по возрасту.
20 100-120
25 97-117
30 95-114
35 92-111
40 90-108
45 87-105
50 85-102
55 82-99
60 80-96
65 и старше 70-84

На первый взгляд эти показатели ЧСС в пульсовой зоне №1 кажутся недостаточными для занятий, но это не так. Тренировки должны проходить постепенно, с медленным нарастанием целевого пульса. Почему? ССС должна «привыкнуть» к изменениям. Если неподготовленному человеку (даже относительно здоровому) сразу дать максимальную физическую нагрузку, то это закончится срывом адаптационных механизмов сердечно-сосудистой системы.

Границы пульсовых зон размыты, поэтому при положительной динамике и отсутствии противопоказаний возможен плавный переход в пульсовую зону №2 (c частотой пульса до 70% от максимальной). Безопасная тренировка сердечно-сосудистой системы ограничена первыми двумя пульсовыми зонами, так как нагрузки в них аэробные (поступление кислорода полностью компенсирует его расход). Начиная с 3-й пульсовой зоны происходит переход с аэробных нагрузок на анаэробные: тканям начинает не хватать поступающего кислорода.

Длительность занятий – от 20 до 50 минут, кратность – от 2 до 3 раз в неделю. Советую прибавлять к занятию не более чем по 5 минут каждые 2-3 недели. Необходимо обязательно ориентироваться на собственные ощущения. Тахикардия при нагрузке не должна вызывать дискомфорт. Завышенная при измерении характеристика пульса и ухудшение самочувствия, свидетельствует о чрезмерной физической нагрузке.

Показана умеренная физическая нагрузка. Основной ориентир – это возможность разговаривать во время пробежки. Если во время бега пульс и частота дыхания увеличились до рекомендуемых, но это не мешает вести беседу, то нагрузку можно считать умеренной.

Для тренировки сердца подойдут легкие и умеренные физические нагрузки. А именно:

  • : пешие прогулки по парку;
  • Скандинавская ходьба с палками (один из самых эффективных и безопасных видов кардиотренировки);
  • Бег трусцой;
  • Не быстрая езда на велосипеде или велотренажере под контролем пульса.

В условиях спортивного зала подойдет беговая дорожка. Расчет пульса такой же, как и для пульсовой зоны №1. Тренажер используют в режиме быстрой ходьбы без подъема полотна.

Какой допустим максимальный пульс?

Частота сердечных сокращений при нагрузках прямо пропорциональна величине нагрузок. Чем большую физическую работу выполняет организм, тем выше потребность тканей в кислороде и, следовательно, тем быстрее ЧСС.

Пульс у нетренированных людей в покое находится в диапазоне от 60 до 90 уд/мин. На фоне нагрузки физиологично и естественно для организма ускорение ЧСС на 60-80% от показателя в покое.

Адаптационные возможности сердца не безграничны, поэтому существует понятие «максимальная частота сердечных сокращений», ограничивающая интенсивность и продолжительность физической нагрузки. Это наибольшая величина ЧСС при максимальном усилии до момента крайнего утомления.

Высчитывается по формуле: 220 – возраст в годах. Вот пример: если человеку 40 лет, то для него ЧССmax–180 уд./мин. При расчете возможна погрешность на 10-15 уд./мин. Существует свыше 40 вариантов формул для подсчета максимальной ЧСС, но это более удобна для использования.

Ниже приведена таблица с допустимыми максимальными показателями пульса в зависимости от возраста и, при умеренной физической нагрузке (бег, быстрая ходьба).

Таблица целевой и максимальной ЧСС при физических нагрузках:

Возраст, годы Целевая ЧСС в зоне 50 – 85% от максимальной Максимальная ЧСС
20 100 – 170 200
30 95 – 162 190
35 93 – 157 185
40 90 – 153 180
45 88 – 149 175
50 85 – 145 170
55 83 – 140 165
60 80 – 136 160
65 78 – 132 155
70 75 - 128 150

Как проверить уровень тренированности?

Для проверки своих возможностей, существуют специальные тесты для проверки пульса, определяющие уровень тренированности человека при нагрузках. Основные виды:

  1. Степ-тест. Используют специальную ступеньку. В течение 3 минут выполняют четырехтактный шаг (последовательно забираются и спускаются со ступеньки). Через 2 минуты определяют пульс и сверяют с таблицей.
  2. Проба с приседаниями (Мартинэ-Кушелевского). Измеряют исходную частоту пульса. Выполняют 20 приседаний за 30 секунд. Оценка проводится по приросту пульса и скорости его восстановления.
  3. Проба Котова-Дешина. В основе – оценка пульса и АД после 3-х минут бега на месте. Для женщин и детей время сокращено до 2-х минут.
  4. . Похожа на пробу с приседаниями. Оценка проводится по индексу Руфье. Для этого пульс измеряют сидя до нагрузки, сразу после нее и через 1 минуту.
  5. Проба Летунова. Старый информативный тест, который использовался в спортивной медицине с 1937 года. Включает оценку пульса после 3-х видов нагрузок: приседаний, быстрого бега на месте, бега на месте с подниманием бедра.

Для самостоятельной проверки тренированности сердечно-сосудистой системы лучше ограничиться пробой с приседаниями. При наличии сердечно-сосудистых заболеваниях тесты можно проводить только под наблюдением специалистов.

Влияние физиологических особенностей

ЧСС у детей изначально выше, чем у взрослых. Так, для 2-летнего ребенка, находящегося в спокойном состоянии, абсолютной нормой считается пульс 115 уд./мин. При физической нагрузке у детей в отличии от взрослых ударный объем (количество крови, выбрасываемое сердцем в сосуды за одно сокращение), пульс и артериальное давление повышается сильнее. Чем младше ребенок, тем сильнее ускоряется пульс даже на незначительную нагрузку. УО при этом изменяется мало. Ближе к 13-15 годам показатели ЧСС становятся похожими на взрослые. Со временем ударный объем становится больше.

В пожилом возрасте тоже есть свои особенности показаний пульса при нагрузке. Ухудшение адаптивных способностей во многом связано со склеротическими изменениями в сосудах. Из-за того, что они становятся менее эластичными, возрастает периферическое сосудистое сопротивление. В отличие от молодых людей, у стариков чаще повышается и систолическое, и диастолическое АД. Сократительная способность сердца со временем становится меньше, поэтому адаптация к нагрузке происходит преимущественно за счет увеличения частоты пульса, а не УО.

Есть адаптационные отличия и в зависимости от пола. У мужчин кровоток улучшается в большей степени за счет увеличения ударного объема и в меньшей – за счет ускорения ЧСС. По этой причине пульс у мужчин, как правило, чуть меньше (на 6-8 уд/мин), чем у женщин.

У человека, профессионально занимающегося спортом, значительно развиты адаптивные механизмы. Брадикардия в покое для него является нормой. Пульс может быть ниже не только 60, но и 40-50 уд./мин.

Почему спортсменам комфортно с таким пульсом? Потому что на фоне тренировок у них увеличился ударный объем. Сердце спортсмена во время физических нагрузок сокращается гораздо эффективнее, что у нетренированного человека.

Как изменяется давление при нагрузке

Еще один параметр, который изменяется в ответ на физическую нагрузку – артериальное давление. Систолическое АД – давление, которые испытывают стенки сосудов в момент сокращения сердца (систолы). Диастолическое АД – тот же показатель, но во время расслабления миокарда (диастолы).

Повышение систолического АД является ответом организма на увеличение ударного объема, спровоцированного физической активностью. В норме систолическое АД увеличивается умеренно, до 15-30% (15-30 мм.рт.ст.).

Изменениям подвергается и диастолическое АД. У здорового человека во время физической активности оно может снижаться на 10-15% от исходного (в среднем, на 5-15 мм.рт.ст.). Это вызвано снижением периферического сосудистого сопротивления: чтобы увеличить поставку кислорода к тканям, кровеносные сосуды начинают расширяться. Но чаще колебания диастолического АД либо отсутствуют, либо незначительны.

Почему важно об этом помнить? Чтобы избежать ложной постановки диагноза. Например: АД 140/85 мм.рт.ст. сразу же после интенсивной физической нагрузки – не симптом гипертонической болезни. У здорового человека АД и пульс после нагрузки довольно быстро приходят в норму. Обычно на это уходит 2-4 минуты (зависит от тренированности). Поэтому АД и пульс для достоверности нужно обязательно перепроверять в покое и после отдыха.

Противопоказания к кардиотренировкам

Противопоказаний к занятиям в пульсовой зоне №1 мало. Определяются они индивидуально. Основные ограничения:

  • Гипертоническая болезнь. Опасность представляют резкие «скачки» артериального давления. Кардиотренировки при ГБ можно проводить только после должной коррекции АД.
  • Ишемическая болезнь сердца (инфаркт миокарда, стенокардия напряжения). Все нагрузки выполняют вне острого периода и только с разрешения лечащего врача. Физическая реабилитация у пациентов с ИБС имеет свои особенности и заслуживает отдельной статьи.
  • Воспалительные заболевания сердца. Под полным запретом нагрузки при эндокардите, миокардите. Кардиотренировку можно выполнять только после выздоровления.

Тахикардия при физических нагрузках – не просто беспричинное ускорение ЧСС. Это сложный комплекс адаптационных физиологических механизмов.

Контроль ЧСС – основа грамотной и безопасной тренировки сердечно-сосудистой системы.

Для своевременной коррекции нагрузки и возможности оценить результаты тренировок сердечно-сосудистой системы рекомендую вести дневник ЧСС и АД.

Автор статьи: Практикующий врач Чубейко В. О. Высшее медицинское образование (ОмГМУ с отличием, ученая степень: “кандидат медицинских наук”).

Начало жиросжигающей зоны

143 – 155 50% – 60%
зона легкой активности 132 – 143
Поделиться