Внутристанционная оптимизация режимов. Задачи оптимизации текущих режимов Оптимизация режимов районных электрических сетей статьи

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат по теме:

Основы оптимизации режимов электрических станций и энергосистем

1. Задачи и критерии оптимизации режимов энергосистем

Оптимизация режимов энергосистем и электростанций является одним из разделов теории и методов управления электроэнергетических систем (ЭЭС). Имеются официальные документы по решению следующего ряда режимных задач в ЭЭС:

Составление плановых балансов мощности и выработки электроэнергии для различных периодов (от минут до года) и для различных объектов.

Определение объемов и цен на долгосрочную, краткосрочную и оперативную продажу электроэнергии, мощности и резервов.

Расчет сетевых тарифов с учетом потерь электроэнергии.

Определение стоимости электроэнергии по зонам графика нагрузки и по сезонам года.

Определение режима работы тепловой электростанции (ТЭС).

Определение режима использования водных ресурсов гидроэлектростанции (ГЭС).

Построение обобщенных энергетических, экономических и стоимостных характеристик для электрических станций и зон электроснабжения.

Регулирование реактивной мощности и напряжения.

Выбор и размещение резервов мощности.

Перечисленные задачи не являются полным списком задач, в которых рассчитывается режим ЭЭС, а лишь показывают важность оптимизации режимов.

Для практического решения и программной реализации любой режимной задачи требуется ее формализация, которая включает пять этапов.

Составление математической модели.

Выбор метода решений.

Разработка алгоритма решения.

Информационное моделирование.

Программная реализация.

Каждая постановка задачи поиска оптимального решения должна удовлетворять как минимум двум требованиям:

Задача должна иметь не менее двух возможных решений;

Должен быть сформулирован критерий для выбора наилучшего решения.

С точки зрения классификации можно выделить следующие задачи оптимизации: управление функционированием системы, управление развитием системы и управление технологическими процессами.

Математическое моделирование. Остановимся кратко на тех положениях моделирования электроэнергетических задач, которые используются для их решения. При построении модели следует учитывать только важнейшие характеристики системы. Необходимо также сформулировать логически обоснованные допущения, выбрать форму представления модели, уровень ее детализации и метод реализации. В оптимизационных исследованиях обычно используются модели двух основных типов: аналитические и регрессионные.

Аналитические модели включают в себя уравнения материального и энергетического балансов, соотношения между техническими характеристиками и уравнения, описывающие физические свойства и поведение системы на уровне технических принципов.

При моделировании важно четко определить границы изучаемой системы. Они задаются пределами, отделяющими систему от внешней среды. В процессе решения задачи может возникнуть вопрос о расширении границ системы. Это повышает размерность и сложность модели. В инженерной практике следует стремиться к разбиению больших систем на относительно небольшие подсистемы. При этом необходимо иметь уверенность в том, что такая декомпозиция не приведет к излишнему упрощению реальной ситуации.

Если свойства системы определены и ее границы установлены, то на следующем этапе моделирования задачи оптимизации выбирается критерий (целевая функция), на основе которого можно оценить поведение системы и выбрать наилучшее решение. В инженерных приложениях обычно применяются критерии экономического характера. Критерием могут быть и технологические факторы: продолжительность процесса производства, количество потребляемой энергии и др. Часто ситуация осложняется тем, что в решении задачи необходимо обеспечить экстремальные значения нескольких противоречивых критериев. В этом случае говорят о многокритериальных задачах.

На следующем этапе моделирования задачи оптимизации необходимо выбрать независимые и зависимые переменные, которые должны адекватно описывать функционирование системы.

При выборе независимых переменных следует:

Провести различие между переменными, значения которых могут изменяться в достаточно широком диапазоне, и переменными, значения которых фиксируются в процессе оптимизации;

Выделить параметры, которые подвержены влиянию внешних и неконтролируемых факторов;

Независимые переменные выбрать таким образом, чтобы все важнейшие технико-экономические решения нашли отражение в математической модели задачи.

Неверный выбор независимых переменных может привести к получению псевдооптимальных решений.

Для зависимых переменных должна быть установлена связь с независимыми. Зависимые переменные, как правило, являются параметрами выхода модели и определяются требованиями к результатам функционирования объекта. Например, расход топлива - независимая переменная, а активная мощность электрической станции - зависимая. Их связь отражается в энергетической характеристике электрической станции.

В общем виде оптимизационная математическая модель включает: формальное описание задачи; критерий решения задачи; независимые и зависимые переменные; уравнения связи между независимыми и зависимыми переменными; ограничения на переменные в форме равенств и неравенств (обычно они определяются верхними и нижними границами изменения параметров системы).

Принятие решения в условиях определенности характеризуется однозначной (детерминированной) связью между принятым решением и его исходом. Детерминированной можно считать систему, в которой элементы взаимодействуют точно предвидимым образом.

Детерминированная модель отражает поведение системы с позиций полной определенности в настоящем и будущем. Поведение такой системы предсказуемо, если известны текущие состояния ее элементов и законы преобразования информации, циркулирующей между ними.

Большинство режимных задач в ЭЭС лишь условно можно считать детерминированными. Однако на практике многие из них решаются именно в этой постановке, что объясняется необходимостью иметь однозначные решения для управления режимами и сложностью, а иногда и невозможностью учета вероятностных свойств ЭЭС, связанных с самой природой событий и технологических процессов

Математическая модель задачи оптимизации в общем виде включает следующие компоненты.

Целевая функция - критерий оптимизации

F(X, Y) extr (1)

2. Уравнения связи, определяющие зависимость между переменными:

Эта связь часто имеет вид определенных характеристик объекта, например, энергетических характеристик. Связь между Х и Y может быть явная или неявная.

3. Уравнения ограничений показывают допустимые условия изменения независимых и зависимых переменных и функций от них:

Хmin ? Х? Хmаx (3)

Ymin ? Y ? Ymаx (4)

hmin ? h"(X,Y) ? hmax (5)

После формулирования задачи оптимизации необходимо выбрать метод оптимизации и методы учета ограничений, подробно изложенные в .

В режимных задачах используются различные критерии оптимизации: технические, экономические и коммерческие. Могут рассматриваться объединения, энергосистемы, электрические станции, предприятия электрических сетей. Это обусловливает разнообразие задач и критериев оптимизации режимов.

Критерии оптимизации внутристанционных режимов электростанции. Для электростанций решается задача внутристанционной оптимизации режимов и чаще всего используются технические критерии, такие как издержки или минимум расхода топлива станции (для ГЭС минимум гидроресурса)

либо максимум КПД

Оптимизация режимов направлена на выбор оптимального состава работающего оборудования, активных Pi и реактивных Qi мощностей агрегатов. Задача решается на любых временных интервалах от минут до года. По этим критериям строится эквивалентная энергетическая характеристика станций.

Критерий оптимизации режимов электрической сети. Электрическая сеть может включать одно или несколько сетевых предприятий. При оптимизации режима электрической сети критерием могут быть потери энергии (или мощности) в сети, т. е. минимум потерь активной мощности:

и минимум потерь электроэнергии

По этим критериям можно получить эквивалентную оптимальную характеристику потерь электроэнергии.

Критерии оптимизации режимов электроэнергетической системы.

При оптимизации режима ЭЭС необходимо учитывать ее технические и хозяйственные особенности: территориальный масштаб и возможности производства электроэнергии. В настоящее время оптимизация режимов имеет важное значение для субъектов, функционирующих на оптовом рынке электроэнергии и мощности. Управление оптовым рынком ведется Администратором торговой системы, который на основе торгов формирует ценовую политику рынка на всех временных интервалах. Субъектами оптового рынка являются электростанции, сетевые предприятий (СП) и крупные потребители. Цены, заявленные электрическими станциями (поставщиками энергии), определяют востребованность их мощности и электрической энергии (товара). Если цены велики, то товар может быть полностью или частично не востребован. Оптимизация режима может проводиться в различных задачах по критериям минимума цены по ЭЭС, минимума издержек или максимума благосостояния субъектов рынка.

Режим влияет на издержки и оптимальным будет при

Но если использовать критерий минимума цены на электроэнергию

то энергетические балансы в ЭЭС изменятся. На практике чаще применяется критерий (11).

2. Планирование режимов работы электрических станций

Эксплуатационные затраты на производство, передачу и распределение электрической энергии зависят не только от внешних факторов, главными из которых являются характеристика и значение подключенной нагрузки, но и от режима электрической системы, на который можно воздействовать через систему управления. Существует определенная связь между эксплуатационными затратами 3 и управлением режимами электрической системы, которую можно охарактеризовать соотношением

В составляющую 30 входят такие компоненты, как затраты на заработную плату эксплуатационного персонала, затраты на комплекс мероприятий по повышению надежности и экономичности работы электроэнергетического оборудования за счет повышения КПД устройств преобразования и передачи энергии (парогенераторов, турбин, генераторов и т.д.). Эти затраты почти не зависят от режима электрической системы, и их уменьшение достигается усилиями эксплуатационного персонала электростанций и сетевых предприятий.

Вторая составляющая 3(Р) характеризует затраты на энергоресурсы и зависит от режима энергосистемы, состава и загрузки включенного в работу оборудования. При этом основными носителями энергии являются топливо для ТЭС и вода для ГЭС. Величина 3(P) определяется затратами на топливо с учетом его добычи и транспортировки. Решение задачи управления режимами энергосистемы заключается в определении управляющих воздействий, обеспечивающих минимум суммарных затрат на производство, передачу и распределение электроэнергии. Таким образом, эта задача сводится к минимизации затрат на энергоресурсы 3(Р). В свою очередь, минимум затрат на топливо может быть достигнут лишь при полном оптимальном использовании ограниченных запасов гидроресурсов.

Значение суммарной активной нагрузки энергосистемы Рн определяется поведением потребителей электроэнергии и рассматривается в энергосистеме как заданный параметр, характеризующий внешнее воздействие. С учетом потерь мощности в элементах сети для каждого момента времени должно выполняться условие баланса мощности

где PH(t) - суммарная нагрузка потребителей; - активная мощность i-го источника в момент времени t; - суммарные потери активной мощности в электрической системе в момент времени t. Невыполнение условия (13) приведет к отклонению частоты от номинального значения.

Условие (13) должно выполняться для поддержания номинальной частоты. Оптимальное управление нормальными режимами энергосистемы заключается в экономичном распределении нагрузки системы между источниками, т.е. в определении значений Pi(t), обеспечивающих минимум затрат на энергоресурсы. При этом располагаемый запас гидроресурсов Wj определяется природными условиями водотока (площадью бассейна, количеством осадков и др.), а также дополнительными условиями судоходства, сплава леса, прохождения рыбы и т.д.

Можно ли осуществить оптимальное управление только на основании текущей информации PH(t) о нагрузке в данный момент времени? Для этого рассмотрим взаимосвязь текущего и последующих режимов ЭЭС через критерий оптимальности. Суточный график суммарной нагрузки (включая потери мощности) для каждой энергосистемы в текущем сезоне года имеет достаточно устойчивый вид для рабочих, нерабочих, праздничных и предпраздничных дней. Характер такого графика показан на рис. 1 Суточный график электропотребления аппроксимируется ступенчатым видом с временным шагом, равным 1 часу. Развитие автоматизированной системы диспетчерского управления привело к переходу от =1 час к получасовой и даже 15-минутной аппроксимации графика электрической нагрузки Рн(t).

Рис. 1 - График суммарной нагрузки ЭЭС

Разница между дневным максимумом Рmax и ночным минимумом Рmin в большей степени зависит от доли промышленного электропотребления и климатических условий. Часть нагрузки P6(t) покрывается базовыми электростанциями, к которым относятся наиболее экономичные блоки конденсационных ТЭС, атомные станции, ГЭС в период паводков, режим которых по тем или иным соображениям считается заданным. Например, для ТЭЦ электрический режим зависит от графика выработки тепловой энергии. Оставшуюся часть графика электрической нагрузки делят на полупиковую и пиковую. Покрытие нагрузки в полупиковой части выполняют КЭС средних параметров и в пиковой части - ГЭС, ТЭС среднего давления и гидроаккумулирующие станции (ГАЭС). Отнесение станций к базовой, полупиковой и пиковой частям графика электрической нагрузки определяется их маневренностью и экономичностью.

Поскольку разница между Рmax и Рmin оказывается большой (иногда она доходит до 50% от Рmax), то состав генерирующего оборудования не может быть неизменным в течение суток. Моменты включения и отключения генераторов электростанций и их загрузка зависят от графика электропотребления и определяются не только значением PH(t) в текущий момент времени. Следовательно, задача оптимизации имеет интегральный характер.

Считая, что гидроэнергоресурсы природа дает нам бесплатно, то режимная составляющая 3(Р) определяется затратами на топливо на интервале времени Т в виде

где: Bi(t) - расход топлива (функция времени) i-й тепловой электростанции, число электростанций составляет NT; d: - коэффициент, учитывающий стоимость топлива, включая его транспортировку до i-й станции.

Задача заключается в определении такого режима работы тепловых электростанций PТi(t) на интервале T, чтобы обеспечить минимум З(Р). Чаще всего в качестве интервала времени Т рассматриваются сутки (24 часа). Если не учитывать интегральный характер оптимизационной задачи, то с позиции данного момента времени всегда выгодно полностью загрузить все ГЭС, что, естественно, приведет к сокращению топливных затрат на ТЭС. Однако быстрое исчерпание гидроресурсов приведет к последующим явно неоптимальным режимам ЭЭС (без участия ГЭС). Поэтому минимизация функции (14) должна выполняться с учетом интегральных ограничений вида

где: - расход воды (функция времени) на j-й гидростанции (в час t); Wj - планируемый запас (попуск) воды на ГЭС; NГ - число ГЭС. Если интегральный расход воды больше, чем объем воды Wj, поступающей в водохранилище, то это приведет к снижению уровня ниже допустимого, если меньше - это приведет к накоплению воды и необходимости сброса ее, минуя гидротурбины, что явно нерационально (заданная для энергосистемы выработка электроэнергии в этом случае достигается за счет дополнительного сжигания топлива на ТЭС).

Интегральный характер задачи оптимизации определяется не только ограничениями (15) по гидроресурсу, но и условиями выбора состава генерирующего оборудования. Обусловливается это тем, что оптимальный состав оборудования не может быть найден только на основании текущей информации о нагрузке энергосистемы. Необходимо оценить ее поведение за некоторое время Т вперед. Представим себе, что для экономии топлива желательно отключить тот или иной агрегат. Однако целесообразность этого может быть определена только с учетом решения следующего вопроса. Окажется ли экономия топлива от отключения агрегата больше дополнительных расходов на последующий его пуск, необходимость которого может быть выяснена лишь с учетом дальнейшего поведения нагрузки и износа оборудования от дополнительных пусков?

На практике задачу оптимизации режима энергосистемы решают в два этапа. Па первом этапе планируют состав оборудования и загрузку ГЭС на основании прогноза о поведении потребителя. На втором этапе решают задачу экономичного распределения нагрузки для заданного состава оборудования. При этом расходные характеристики Вi = f(Pi) соответствуют выбранному составу генерирующего оборудования (парогенераторов, турбин, блоков).

Таким образом, задача оптимизации режима ЭЭС состоит в отыскании минимума функции 3(Р) согласно (14) при выполнении условий баланса мощности (13) и баланса воды (15). Интегральный характер задачи оптимизации предопределяет многоэтапность ее решения через прогнозирование нагрузки PH(t), планирование режима тепловых и гидроэлектростанций на сутки PTi(t), PГi(t), т.е. планирование так называемых диспетчерских графиков работы электростанций, и оперативную коррекцию этих графиков в связи с возникающими ошибками в прогнозе нагрузки и внеплановыми аварийными изменениями в составе как генерирующего оборудования, так и в электрической сети (отключения ЛЭП, (авто)трансформаторов). Приведенная формулировка задачи оптимизации оказывается неполной, так как в ней не оговорены условия надежного и качественного питания электропотребителей. Эти условия задаются в виде ряда режимных ограничений в форме неравенства.

Перечислим наиболее часто встречающиеся режимные ограничения:

Активные мощности станций изменяются в пределах

определяемых, с одной стороны, перегрузочной способностью генераторов, а с другой - устойчивостью работы теплового оборудования (например, горением факелов в парогенераторах) при пониженных нагрузках.

Располагаемая реактивная мощность генераторов в общем виде зависит от загрузки активной мощностью, но для упрощения задачи обычно задается жесткими границами:

Напряжения узлов также должны задаваться в допустимых пределах с учетом регулировочной способности трансформаторов:

Перечисленные ограничения часто называются узловыми, так как они относятся к параметрам узлов электрической схемы системы. Наряду с ними в некоторых случаях необходимо учитывать линейные ограничения на токи и потоки мощности линий электропередачи или трансформаторных ветвей электрической схемы

из условий нагрева проводов и сохранения устойчивости системы.

Контроль напряжений узлов и перетоков мощности в линиях электропередачи или в их совокупности, называемых сечениями, приводит к необходимости включения в задачу оптимизации уравнений установившегося режима:

электрический сеть станция контроль

где: Si - полная узловая мощность, равная Si = SГj - SHi; SГj - вырабатываемая полная мощность ТЭС или ГЭС; SHi - полная мощность электропотребления; Yij - взаимная проводимость i и j узлов электрической схемы; п - число узлов в ЭЭС без балансирующей электростанции, напряжение на шинах которой Un+1 должно быть задано.

В уравнениях (20) индекс t опущен, но надо иметь в виду, что все параметры электрических режимов являются переменными во времени - Uj(t), SHi(t) и т.д.

Полная задача оптимизации больших энергосистем столь сложна, что несмотря на высокое совершенство вычислительных средств ее приходится упрощать, естественно, в такой мере, чтобы не допустить существенной погрешности решения. В первую очередь, это касается разделения этой задачи на этапы:

Выбор состава оборудования (определение графика состояния генерирующего оборудования в течение суток);

Оптимизация режима ЭЭС при заданном составе оборудования.

В свою очередь, оптимизация режима ЭЭС, содержащей тепловые и гидравлические станции, разделяется на:

независимое планирование режима гидроэлектростанций;

независимое планирование режима тепловых электростанций.

В некоторых случаях для достижения требуемой точности оптимизации эти два процесса связываются в итерационный циклический процесс, но редко, когда таких циклов делается более двух. Для первоначального графика работы ГЭС (например, взятого из предшествующих суток) определяется оптимальный режим ТЭС. После этого уточняется режим ГЭС и еще раз режим ТЭС.

Интегральные ограничения (15) вносят существенное усложнение в задачу оптимизации, т.к. она должна рассматриваться в целом как интегральная, т.е. с отысканием минимума суммарных затрат на интервале планирования, чаще всего, суточном. Если суточный график нагрузки аппроксимируется с шагом 1 час, то Т=24. В ряде энергосистем рассматриваются получасовые интервалы и Т=48.

Здесь следует обратить внимание на следующее важное обстоятельство. Если в ЭЭС гидростанции отсутствуют (систему можно рассматривать как тепловую, состоящую только из ТЭС), то, записывая функцию (14) в виде

получаем, так называемое, свойство сепарабельности, для которого выполняется равенство «минимум суммы равен сумме минимумов»:

Это означает, что оптимальный режим первого часового интервала не зависит от режима второго интервала и т.д. Следовательно, сложная интегральная задача оптимизации распадается на Т (количество интервалов) самостоятельных более простых задач, в каждой из которых отыскивается свой минимум.

Выполнив оптимизацию режима ЭЭС для каждых из Т интервалов, в конечном итоге получаются диспетчерские графики работы всех электростанций в виде, представленном на рис. 2.

Рис. 2 - Диспетчерский график работы электрической станции

С задачей планирования режима работы электростанций по активной мощности тесно связана с задачей определения уровней напряжения контрольных точек энергосистемы. Дело в том, что величина потерь мощности Р, водящих в баланс, зависит не только от, но и от генерируемой реактивной мощности, которая, в свою очередь, определяет уровни напряжения и токовую загрузку линий. Совместное решение обеих задач называется комплексной оптимизацией режима ЭЭС.

Литература

1. Оптимизация режимов энергосистем: Учебное пособие / П.И. Бартоломей, Т.А. Паниковская. Екатеринбург: УГТУ - УПИ, 2008. - 164 с.

2. Макоклюев Б.И. Анализ и планирование электропотребления. - М.: Энергоатомиздат, 2008. - 296 с.

3. Т.А. Филиппова и др. Оптимизация режимов электростанций и энергосистем: Учебник /Т.А. Филиппова, Ю.М. Сидоркин, А.Г. Русина; - Новосиб. гос. техн. ун-т. - Новосибирск, 2007. - 356 с.

4. Иерархические модели в анализе и управлении режимами электроэнергетических систем / О.А. Суханов, Ю.В. Шаров - М.: Издательский дом МЭИ, 2007. - 312 с.

5. Лыкин А.В. Электрические системы и сети: Учеб. пособие. - М.: Университетская книга; Логос, 2006. - 254 с.

6. Филиппова Т.А. Энергетические режимы электрических станций и электроэнергетических систем: Учебник - Новосибирск: Изд-во НГТУ, 2005. - 300 с.

Размещено на Allbest.ru

Подобные документы

    Характеристика основных методов решения задач нелинейного программирования. Особенности оптимизации текущего режима электропотребления по реактивной мощности. Расчет сети, а также анализ оптимальных режимов электропотребления для ОАО "ММК им. Ильича".

    магистерская работа , добавлен 03.09.2010

    Моделирование различных режимов электрических сетей нефтяных месторождений Южного Васюгана ОАО "Томскнефть". Расчет режима максимальных и минимальных нагрузок энергосистемы. Качество электрической энергии и влияние его на потери в электроустановках.

    дипломная работа , добавлен 25.11.2014

    Выбор номинального напряжения сети, мощности компенсирующих устройств, сечений проводов воздушных линий электропередачи, числа и мощности трансформаторов. Расчет схемы замещения электрической сети, режима максимальных, минимальных и аварийных нагрузок.

    курсовая работа , добавлен 25.01.2015

    Расчет источника гармонических колебаний. Определение резонансных режимов электрической цепи. Расчет переходных процессов классическим методом. Определение установившихся значений напряжений и токов в электрических цепях при несинусоидальном воздействии.

    курсовая работа , добавлен 18.11.2012

    Исследование линейной электрической цепи: расчет источника гармонических колебаний и четырехполюсника при синусоидальном воздействии; определение параметров резонансных режимов в цепи; значения напряжений и токов при несинусоидальном воздействии.

    курсовая работа , добавлен 30.08.2012

    Устройства и характеристики энергосистем. Системы электроснабжения промышленных предприятий. Преимущества объединения в энергосистему по сравнению с раздельной работой одной или нескольких электрических станций. Схема русловой гидроэлектростанции.

    презентация , добавлен 14.08.2013

    Формирование узловых и контурных уравнений установившихся режимов электрической сети. Расчет утяжеленного режима, режима электрической сети по узловым и нелинейным узловым уравнениям при задании нагрузок в мощностях с использованием итерационных методов.

    курсовая работа , добавлен 21.05.2012

    Суть технического и экономического обоснования развития электрических станций, сетей и средств их эксплуатации. Выбор схемы, номинального напряжения и основного электрооборудования линий и подстанций сети. Расчёт режимов работы и параметров сети.

    курсовая работа , добавлен 05.06.2012

    Общая характеристика Юго-Восточных электрических сетей. Составление схемы замещения и расчет ее параметров. Анализ установившихся режимов работы. Рассмотрение возможностей по улучшению уровня напряжения. Вопросы по экономической части и охране труда.

    дипломная работа , добавлен 13.07.2014

    Модели нагрузки линии электропередачи. Причины возникновение продольной несимметрии в электрических сетях. Емкость трехфазной линии. Индуктивность двухпроводной линии. Моделирование режимов работы четырехпроводной системы. Протекание тока в земле.

В статье приведены мероприятия по оптимизации режимов работы силовых трансформаторов с целью минимизации потерь электрической энергии. Показано влияние фактического напряжения и срока эксплуатации силовых трансформаторов на потери электроэнергии. Предложено определять экономическую мощность силовых трансформаторов с учетом указанных факторов, а также с учетом времени включения трансформатора в электрическую сеть и формы графика нагрузки.

Задачам оптимизации управления системами электроснабжения уделяется пристальное внимание, начиная с момента появления первых автоматизированных систем проектирования и автоматизированных систем управления на основе компьютеров. Действующие программные системы позволяют проверять реальность и оптимальность проектных решений по отдельным энергетическим объектам, а также надежность функционирования работающей энергосистемы в целом путем решения конкретных технологических задач. Программное обеспечение используется также для сравнительного анализа разных стратегий проектирования, монтажа, оптимизации и эксплуатации при принятии решений на основании состояния и параметров режима электрической сети.

Основными элементами электрической сети являются силовые трансформаторы подстанций и линии электропередачи. Данные элементы в любом аналитическом или синтетическом программном продукте представляются своими математическими моделями. Из всего множества моделей в общем случае можно выделить два основных вида, используемых при решении поставленных задач:

1) Общепринятая графическая модель электрической схемы энергосистемы (включая силовые трансформаторы и ЛЭП);

2) Специализированные модели расчетных схем, описывающие схему электрической сети энергосистемы на уровне требований применяемых математических методов и конкретных технологических задач.

Задачи повышения энергоэффективности систем электроснабжения различных объектов требуют выполнения мероприятий, нередко связанных с инженерными расчетами. Инженерные расчеты в области энергосбережения являются трудоемким процессом. Принимая во внимание сложность и высокую стоимость выполнения таких работ, необходимость и полезность энергосберегающих мероприятий не всегда являются очевидными для руководства предприятий, организаций и учреждений.

Большая часть принимаемых решений строго регламентирована законами, руководящими указаниями и другими нормативными документами. Это дает возможность автоматизировать решения многих частных и комплексных задач, в том числе задач по повышению энергоэффективности эксплуатирующихся силовых трансформаторов.

На трансформаторных подстанциях устанавливаются, как правило, два силовых трансформатора. В зависимости от суммарной нагрузки подстанции в ненагруженные часы выгодно отключать один трансформатор. Такой режим работы следует считать мероприятием по энергосбережению, так как коэффициент полезного действия оставшегося в работе трансформатора приближается к максимальному значению.

Оптимальную нагрузку трансформатора S ОПТ, отвечающую максимально возможному коэффициенту полезного действия, можно найти по формуле :

где S НОМ - номинальная мощность трансформатора, кВ∙А; ΔP ХХ - потери холостого хода, кВт; ΔP КЗ - потери короткого замыкания, кВт.

Отношение оптимальной нагрузки трансформатора и его номинальной мощности является оптимальным коэффициентом загрузки трансформатора k З:

При пользовании формулами (1) и (2) коэффициент загрузки трансформаторов получается достаточно низким (в пределах 0,45÷0,55), так как трансформаторы выпускаются с соотношением потерь холостого хода и короткого замыкания в диапазоне 3,3÷5,0. Обычно в проектной практике пользуются максимальными значениями нагрузки, по которым определяется и загрузка трансформаторов. Коэффициент загрузки оказывается значительно ниже оптимального значения, поэтому находящиеся в настоящее время в эксплуатации силовые трансформаторы имеют низкую загрузку и многие из них работают в неоптимальном режиме.

Потери мощности в силовом трансформаторе определяют по формуле :

где U - фактическое напряжение на выводах обмотки высшего напряжения трансформатора, кВ; U НОМ - номинальное напряжение обмотки высшего напряжения, кВ.

Потери электроэнергии в силовом трансформаторе зависят от времени включения трансформатора, формы графика электрических нагрузок и определяются по формуле:

где Т ГОД - количество часов работы трансформатора в году, ч; τ - время наибольших потерь, определяемое по фактическому графику нагрузки или через справочное значение количества часов использования максимальной нагрузки, ч.

Минимум потерь энергии в трансформаторе в течение года будет при равенстве потерь энергии холостого хода и энергии короткого замыкания. Нагрузку трансформатора, учитывающую показатели графика электрической нагрузки Т ГОД, τ и отвечающую минимуму потерь электроэнергии можно найти с учетом (4) при U=U НОМ:

Проведены сравнительные расчеты по формулам (1) и (5) с учетом средних значений продолжительности использования максимума нагрузки в промышленности . Расчеты показали, что понижающие трансформаторы требуют более высокой загрузки, чем они имеют на практике.

В некоторых случаях может оказаться целесообразным отключение части трансформаторов, работающих на общую нагрузку S Н. Определим экономически выгодную нагрузку S ЭК,Δ P при работе, в пределах которой достигается максимально выгодная загрузка трансформаторов. При изменении нагрузки от нуля до S ЭК,Δ P целесообразна работа одного трансформатора, при нагрузке свыше S ЭК,Δ P , экономически выгодна работа двух трансформаторов. Нагрузка S ЭК,Δ P , при которой целесообразно отключать один из трансформаторов и обусловленная равенством потерь мощности при работе одного и двух трансформаторов определяется по формуле:

Нагрузку S ЭК,Δ W , обусловленную равенством потерь электроэнергии при работе одного и двух трансформаторов, предлагается, по аналогии с (6), определять с учетом времени включения трансформатора и формы графика электрических нагрузок по формуле:

На рисунке согласно уравнениям (3) и (4) представлены зависимости потерь мощности и электроэнергии в силовых трансформаторах двухтрансформаторной подстанции от мощности нагрузки на шинах низшего напряжения S Н.

Рис. - Определение экономической мощности трансформаторов по критериям

минимума потерь мощности и электроэнергии: ΔP 1 , ΔW 1 - потери мощности и энергии при работе одного трансформатора; ΔP 2 , ΔW 2 - потери мощности и энергии при работе двух трансформаторов.

Анализ зависимостей ΔP(S Н) и ΔW(S Н) показывает смещение экономической мощности в сторону ее увеличения при учете времени включения трансформатора и фактического графика электрических нагрузок. При расчетах S ЭК,Δ W по (7) увеличивается интервал экономической мощности. В этом случае увеличивается продолжительность работы подстанции с одним трансформатором при неравномерном графике нагрузки. Экономия достигается за счет отсутствия потерь холостого хода отключенного трансформатора.

Влияние фактического напряжения U на выводах трансформатора на потери мощности и энергии отражают формулы (3) и (4). С целью снижения потерь целесообразно установить такой режим трансформатора, при котором напряжение на обмотках высшего напряжения не будет превышать номинальное значение. Существенное снижение напряжения также недопустимо, поскольку может не обеспечить требования ГОСТ по отклонению напряжения у потребителя. Снижение напряжения на подстанциях приводит также к увеличению потерь электроэнергии в линиях электропередачи.

Следует отметить, что в рамках жизненного цикла силового трансформатора наблюдаются изменения магнитных свойств электротехнической стали и рост потерь холостого хода ΔP ХХ. При расчетах потерь электроэнергии в силовых трансформаторах рекомендуется использовать фактические значения потерь холостого хода, полученные путем измерений в условиях эксплуатации. Это в первую очередь относится к группам силовым трансформаторам, находящимся в длительной эксплуатации. Последние исследования показывают, что для силовых трансформаторов со сроком эксплуатации более двадцати лет паспортные потери холостого хода ΔP ХХ.ПАСП при расчетах должны быть увеличены на 1,75% за каждый год эксплуатации сверх 20 лет :

где T СЛ - срок эксплуатации трансформатора, лет.

Тогда с учетом (2), (4), (5) и (8) оптимальный коэффициент длительной загрузки силового трансформатора, находящегося в эксплуатации более 20 лет, должен определяться по формуле:

Очевидно, что отключение по экономическим соображениям части трансформаторов не должно отражаться на надежности электроснабжения потребителей. С этой целью выводимые из работы трансформаторы должны сопровождаться устройствами автоматического ввода резерва. Целесообразно автоматизировать операции отключения и включения трансформаторов. Для сокращения числа оперативных переключений частота вывода трансформаторов в резерв не должна превышать 2-3 раз в сутки. Кроме того, загрузка трансформаторов, определяемая по формулам (7) и (9) не должна превышать допустимые значения . Исходя из соотношения показателей экономичности и надежности, рассматриваемые в настоящей статье подходы, являются весьма актуальными для подстанций, имеющих сезонные колебания нагрузки.

Приведенные в настоящей статье положения по оптимизации режимов работы трансформаторов реализованы в виде программного обеспечения . Веб-сервис «Онлайн Электрик» позволяет руководителям предприятий и учреждений достаточно оперативно оценивать технико-экономические показатели мероприятий по повышению энергоэффективности работы трансформаторного оборудования и устанавливать их целесообразность, а энергоаудиторам - качественно дополнять и обосновывать энергетические паспорта зданий и сооружений в сокращенные сроки.

Реализация энергосберегающих мероприятий на трансформаторном оборудовании посредством ресурсов «Онлайн Электрик» имеет целый ряд преимуществ по сравнению с классическим решением подобных задач «вручную» или на программном обеспечении, устанавливаемом на персональных компьютерах, а именно:

1) не нужно приобретать и устанавливать прикладные программы на компьютер;

2) имеется возможность подключения к системе из любой точки планеты;

3) пользователю нет необходимости отслеживать и постоянно обновлять версии программного обеспечения;

4) отчеты с предоставлением используемых формул позволяют убедиться в достоверности расчетов.

Список используемых источников

1. Киреева, Э.А. Полный справочник по электрооборудованию и электротехнике (с примерами расчетов): справочное издание / Э.А. Киреева, С.Н. Шерстнев; под общ.ред. С.Н. Шерстнева.- 2-е изд., стер.- М.-: Кнорус, 2013.- 864 с.

2. Справочник по проектированию электрических сетей / под ред. Д. Л. Файбисовича. - 4-е изд., перераб. и доп. - М. : ЭНАС, 2012. - 376 с. : ил.

3. ГОСТ 14209-97. Руководство по нагрузке силовых масляных трансформаторов.- Введ. 2002.01.01.- Минск, 1998.

4. Коротков, А.В. Методы оценки и прогнозирования энергетической эффективности электротехнических комплексов городских распределительных сетей [Электронный ресурс]: автореф. дис. … канд. техн. наук: 05.09.03 / Коротков А.В.; Санкт-Петербургский государственный политехнический университет. - Электрон. текстовые дан. (1 файл: 283 Кб). - Санкт-Петербург, 2013. - Загл. с титул. экрана. - Электронная версия печатной публикации. - Свободный доступ из сети Интернет (чтение, печать, копирование). - Текстовый файл. - Adobe Acrobat Reader 7.0. - .

5. Онлайн Электрик: Интерактивные расчеты систем электроснабжения. - 2008 [Электронный ресурс]. Доступ для зарегистрированных пользователей. Дата обновления: 08.02.2015. - URL: http://www.online-electric.ru (дата обращения: 08.02.2015).

Введение. 5

1.1. Параметры режима ЭС. 6

1.4.2. Градиентный метод. 11

1.11.1. Графический метод. 24

2.2. Подсистемы АСУ ТП. 53

2.3.2. Счетчики. 56



2.5. АСУ ТП ТЭС. 67

2.6. АСУ ПЭС.. 70

2.7. АСУ ТП подстанций. 70


Введение

X

Y – вектор параметров режима;

U – вектор управления.

Функциональные зависимости Y(X,U), Z(X,Y,U).



Параметры режима ЭС

Математическая модель режима – это система нелинейных алгебраических уравнений, как правило, узловых.

где - матрица узловых проводимостей, имеет порядок n ;

Вектор напряжений в узлах;

Вектор узловых мощностей;

n – количество независимых узлов.

Для решения системы должны задаваться независимые параметры , к числу которых относятся узловые мощности и напряжения в балансирующем узле. Имея эти параметры можно однозначно определить режим (если он существует) путем решения системы (1).

Все остальные параметры режима, получаемые на основе расчета: напряжения в узлах ЭС – U S , потоки по линиям –P l , Q l , токи в ветвях –I l , потери – DP и др., называют зависимыми параметрами режима .

Часть независимых параметров (узловые мощности) в нормальных условиях не подчиняются диспетчеру (нагрузки в узлах). Остальные (мощности источников) должны оптимизироваться. К числу независимых параметров относятся и коэффициенты трансформации автотрансформаторов связи сетей разных напряжений (К Т), которые могут регулироваться с помощью РПН.

Своеобразным независимым параметром является и состав включенного в работу оборудования, который характеризуется графом G.

Независимые параметры режима, оптимизация которых должна проводиться при диспетчерском управлении, можно рассматривать как вектор X = { P i , Q i , K T , G, } , где индекс i определяет источники.

По аналогии вектор зависимых параметров объединяет все остальные параметры режима, однозначно определяемые при фиксированных допустимых значениях всех независимых параметров:

Y = {U S , P l , Q l , I l , d, DP,… }

Для определения Y при заданных X используются различные методы и программы расчета стационарных режимов.

Градиентный метод

Возможное направление выбирают противоположным градиенту:

Основное уравнение:

.

Составляющие градиента находятся через конечные приращения (рис.1.7):

.

Так как tgb ¹ tga, то этот метод имеет погрешность в определении градиента, которая зависит от величины приращения аргумента.

Для снижения погрешности используют метод центрированных приращений .

Градиентный метод часто сочетается с выбором оптимального шага. Для выбора используется пробный шаг t 0, в конце которого определяются координаты Х1 и составляющие градиента. По значениям градиента в точках Х и Х1 определяется шаг близкий к оптимальному. Алгоритм метода приведена рис.1.8.:

1. Исходное приближение Х = Х (0) ;

2. Определение градиента ÑF | X ;

3. Сравнение |ÑF| < eps;

4. t 0 и определение ;

5. Определение t ОПТ;

6. Определение ;

Метод широко используется в программах оптимизации режимов.

Метод случайного поиска

В данном методе возможные направления определяются с помощью генератора псевдослучайных чисел с равномерным распределением в диапазоне -1,…,1.

Для этого в исходной точке Х (0) рассматривается куб с гранью 2×dx (рис.1.9) и считается значение функции F 0 . Случайным образом выбирается точка в кубе , где g i – псевдослучайное число (-1 £ g i £ 1). В точке Х (1) считается значение функции F 1 .

Если F 1 < F 0 , то исходная точка Х (0)­­­ переносится в точку Х (1) и процедура повторяется. Если F 1 > F 0 , то выбранная точка Х (1) считается неудачной, и вместо нее отыскивается новая точка. Вдали от минимума вероятность попадания в область возможных направлений близка к 50%. По мере приближения к решению величина dx уменьшается.

Достоинства метода: простота алгоритма, не требующего вычисления производных. Недостаток - большое число итераций.

Метод прямой оптимизации

Данный метод используется, когда G(X) представлена простыми функциями, например линейными. В этом случае m неизвестных из n можно аналитически выразить через остальные k = n – m и подставить эти выражения в F(X). Тогда получим новую функцию ,

условие минимума которой будет иметь k уравнений:

Решение этих уравнений позволяет найти все k составляющих вектора c. Остальные переменные находятся подстановкой в ранее найденные выражения.

Рассмотрим пример:

F(X) = 5 + x 1 2 + x 2 2 ® min;

g(X) = x 1 + x 2 – 2 = 0;

f(c) = f(x 2) = 5 + (2 – x 2) 2 + x 2 2 ® min,

, –2(2 – x 2) + 2x 2 =0, x 2 = 1;

x 1 = 2 – 1 = 1.

Метод прямой оптимизации прост, но может быть использован для решения только аналитически заданных функций сравнительно простого вида.

Характеристики блоков

Рассмотрим упрощенную схему основных потоков энергии в блоке

Полагаем, что известны следующие расходные характеристики:B(Q K), Q т (P), Q CH (P), P CH (P). При этом часовые расходы на собственные нужды отнесены на выработку электроэнергии.

При построении ХОП блока различают удельный прирост расхода топлива брутто и нетто .

Прирост брутто относят к полной выработке

где – относительный прирост расхода тепла на собственные нужды.

Прирост нетто относят к полезно отпущенной выработке

так как. ,

где – относительный прирост расхода электроэнергии на собственные нужды.

Для приблизительного расчета можно не учитывать собственные нужды. Тогда: .

Для примера на рис 1.24 показана ХОП блока 200 МВт.

Корректировка ХОП в процессе эксплуатации требует учета всевозможных факторов, влияющих на КПД основного оборудования блока, изменения внешних условий, таких как температура наружного воздуха, температура циркуляционной воды, изменение характеристик топлива и т.п.

Маневренные свойства блока

КЭС участвуют в регулировании частоты и перетоков мощности в системе, что требует иногда быстрого изменения их мощности. При этом различают нагрузочный диапазон P min £ P £ P max и регулировочный диапазон, в котором нагрузка может меняться автоматически без изменения состава вспомогательного оборудования (числа горелок, питательных насосов и т.д.).

Сброс нагрузки производится быстро, а подъем – медленно по несколько процентов в минуту, особенно при включении блока после простоя. Время пуска из холодного состояния определяется плавным подъемом температуры в элементах конструкции турбины и котла, например, в барабане котла на 2,5…3,0 °С/мин, и может достигать нескольких часов, а для мощных блоков и более 10 часов. Контроль за состоянием, например, турбины при пуске осуществляется по приборам, фиксирующим относительное удлинение и осевой сдвиг ротора; разность температур между верхом и низом цилиндров, по ширине фланцев, между фланцами и шпильками; искривление вала и вибрацию; тепловое расширение паропроводов и корпуса турбины и т. п.

При плановых простоях в часы снижения потребления продолжительность пуска зависит и определяется временем простоя блока. Пуск сопровождается дополнительными пусковыми расходами топлива, которые также зависят от длительности простоя, и от номинальной мощности блока, определяющей его массогабаритные показатели. При пуске из холодного состояния мощного пылеугольного блока они могут достигать нескольких сотен тонн.

Графический метод.

Графический метод используется, когда ХОП всех блоков e(P) заданы в виде графиков (рис.1.25). Все ХОП строятся в одном масштабе по оси приростов. Затем строится характеристика станции путем суммирования мощностей блоков при фиксированных значениях прироста по условию .

После этого на оси мощности ХОП электростанции откладывается значение ее нагрузки Р о и определяются соответствующие мощности блоков при выполнении баланса .

Оптимизация надежности

Предлагаемый раздел не претендует на глубокое изложение проблемы надежности, являющейся одной из ключевых при управлении режимами и изучаемой в рамках специальной дисциплины. Здесь лишь рассматривается подход к оценке оптимального уровня надежности на примере выбора аварийного резерва в системе.

Уровень надежности при этом рассматривается как экономическая категория, так как связан с затратами З на повышение надежности и сокращением при этом затрат у потребителя при полной или частичной потере питания, определяемых как ущерб У от недоотпуска электроэнергии (рис.1.48). Оптимальный уровень надежности Н опт определяется по минимальным общим затратам.

При оценке надежности используется статистический материал, позволяющий определить вероятности нерабочего q и рабочего p состояния.

q + p = 1 .

,

где l – показатель потока отказов, определяющийся по типу оборудования, выбирается путем сбора статистики.

Рассмотрим пример выбора одноцепной или двухцепной ЛЭП для электроснабжения потребителя:

n = 1: ,

где у 0 – удельный ущерб руб/кВт×ч,

T – расчетный срок.

Двухцепная ЛЭП выгодна, если .

Подсистемы АСУ ТП.

АСУ ТП делятся на подсистемы:

1. элементные;

1) включают подсистемы технического обеспечения (ТО) – все технические средства;

2) информационное обеспечение (ИО) – вся информация;

3) программное обеспечение (ПО);

4) организационное обеспечение (ОО), определяющее порядок подготовки данных, обмена между подразделениями, сроки подготовки информации, формы выходных документов и т.п.;

5) кадровое – штатное расписание, должностные инструкции, система повышения квалификации и т.п.

2. функциональные:

1) управление текущим режимом (REAL TIME);

2) планирование:

· текущее – на 1 ч, 1 сутки, неделю,

· перспективное – на 1 месяц и более;

3) материально-техническое снабжение (МТС) – новое оборудование, детали для ремонта, топливо и т.п.;

4) управление сбытом тепловой и электрической энергий;

6) бухгалтерский учет (заработная плата).

Счетчики.

В настоящее время очень актуальна задача учета электроэнергии. Для этой цели используются различные счетчики:

· индукционные, для автоматизации дополняются устройством формирования импульса (УФИ);

· электронные счетчики, очень перспективные, сегодня выпускаются в достаточном количестве;

· АББ Альфа – многофункциональный счетчик (W P , W Q , P­ MAX , четырех тарифная зона, контроль или выдача в виде электрического сигнала уровня напряжения, допускают воздействие на отключение, имеют высокую точность 0,2 % , чувствительность 1000 [????], на порядок дороже).

Срок службы 20¸30 лет. Эти счетчики являются основой АСКУЭ.

2.3.3. Устройства преобразования информации.

1. АЦП бывают различными видами преобразования:

– развертывающее,

– с поразрядным уравновешиванием.

Развертывающее преобразование:

При U BX > U П запускается счетчик импульсов.

Недостаток данного вида преобразования: время преобразования зависит от частоты сигнала.

Поразрядное уравновешивание:

Данное преобразование работает следующим образом:

С помощью компаратора K через устройство управления УУ на триггерах поочередно, начиная со старшего разряда 2 n выставляется 1. Если при этом U OC > U BX , то 1 сбрасывается. В противном случае – сохраняется. Например:

1 × 2 3 = 8 , U OC = 8 > U BX = 7 .

1 × 2 2 = 4 , U OC = 4 > U BX = 7 .

U OC = 2 2 × 1 + 2 1 = 6 < U BX = 7 .

U OC = U BX Þ код 0111 .

2. ЦАП : ,

Схема на операционном усилителе.

Регистраторы событий.

В настоящее время электронные осциллографы заменяются специальными регистраторами событий, которые позволяют записывать все процессы (мгновенные токи и напряжения i t , U t ) в аварийных ситуациях, а также в момент срабатывания устройств РЗиА. Это позволяет анализировать аварии, достоверно определять причины и способствует повышению надежности. Источником информации являются электронные преобразователи ЭП, практически безинерционные, позволяющие без искажения в прямом виде снимать кривые i t и U t . Обычное число точек на период – 20. Примерами таких регистраторов являются: РЭС ПРСОФТ и НЕВА (позволяет регистрировать до 90 сигналов, большое значение имеет развитое программное обеспечение). НЕВА является основой для построения АСУ ТП на мощных системных подстанциях.

Информационное обеспечение.

Информационное обеспечение содержит всю информацию, которая используется при управлении. Эта информация делится на количественную и смысловую.

Смысловая информация – это разного рода документы, инструкции, правила устройства и т.п.

Количественная информация – это информация о параметрах системы и технологического процесса.

Источниками технологической информации являются УТМ. Они осуществляют циклический опрос датчиков с периодом t (5 с, 1 с). Если время обработки первого опроса Dt , то число точек опроса . Цикл опроса t зависит от скорости изменения параметров ().

Любой измеряемый параметр y t представляется в цифровом виде целым числом квантов , где m – масштаб кванта.

Масштаб кванта определяется разрядностью АЦП устройства ТМ и номинальными параметрами первичных преобразователей.

При n = 8 (8 разрядов) максимальное значение Y = 256

Например, если прибор имеет номинальный ток I H = 600 А , то

А/квант .

При измерении напряжения: U H = 110 кВ

.

При измерении мощности:

Для U H = 500 кВ и I H = 2000 А

.

Единицами измерения информации является бит и его производные:

байт = 8 бит,

кбайт = 1024 байт, Мбайт, Гбайт и т.д.

Информация – мера устранения нашей неопределенности об объекте, поэтому единица измерения и оценивает меру снижения неопределенности. Один бит позволяет снизить неопределенность в 2 раза. При представлении информации используется система кодирования с помощью равномерных и неравномерных ходов. Равномерное проще, т.к. ходы имеют постоянную длину.

Один байт позволяет закодировать 2 8 = 256 различных символов. Обычно хватает n = 7 . Один лишний используется для аппаратной проверки достоверности. Это бит четности. Содержимое его (0 или 1) дополняют до четного. Например:

Для повышения достоверности используется:

1) разделение информации на блоки с определением контрольной суммы и передача их в пункт приема,

2) контрольная сумма по всему сообщению.

Для сокращения объема передаваемой информации по линиям связи используют классификаторы. По этой системе все предприятия, объекты, их продукты производства представляются цифрованными кодами.

При работе с этой информацией, которая представляется массивами однотипных данных, широко используются системы управления базами данных (СУБД), позволяющие проводить первичную загрузку, обновление, корректировку и надежное хранение данных.

АСУ ТП ТЭС.

Управление режимом ТЭС осуществляет дежурный инженер, который подчиняется диспетчеру АО Энерго и управляет работой оперативного персонала блоков и отдельных механизмов С.Н., которые размещаются на БЩУ или местных ЩИТАХ. В соответствие с этой структурой строится и система автоматизации управления. Здесь имеется общестанционный уровень (ОВК – общестанционный вычислительный комплекс) и уровни отдельных блоков (ПВК – хххххххххх ВК). Источники информации – датчики технологических параметров (тепловая часть) и электрических, а также, положение аппаратов с двумя устойчивыми состояниями. ТМ здесь в полной мере не используется. ТМ используется только для выдачи информации диспетчеру электростанции (энергосистемы).

При управлении ИВК могут использовать в различных режимах:

1) режим советчика

Здесь U – управляющее воздействие.

2) супервизор (надсмотрщик)

ИВК используется:

может менять уставки регуляторов y i и параметры настройки. Решения принимаются на основе анализа.

3) цифровое управление:

ЛПР принимает решение на основе знаний технологического процесса, опыта и информации.

ИВК принимает решение только на основе математических моделей. На ТЭС реализованы функционально-групповое управление, т.е. комплексное управление группой объектов, выполняющих различные функции.

Котел:

– подача топлива, где согласуется работа подачи сырого угля, мельницы, формирования пылевоздушной смеси и подача её в горелки;

– подача воды: питательные насосы ПН, конденсационные насосы КН, деаэратор, насос химически чистой воды;

– подача воздуха: воздухоподогреватель, дутьевые вентиляторы и т.п.

Синхронный генератор:

– система возбуждения (СВ): трансформатор, тиристоры, охлаждение тиристоров, регулятор возбуждения;

– система охлаждения генератора:

а) водяное: подготовка дистиллята, насосы, система контроля утечки, температуры на входе и выходе, устройство охлаждения нагретой воды.

Для контроля отдельных групп могут использоваться различные технические средства и программы. Например, для водяного охлаждения обмоток статора используется система “Нептун”, включающая сотни датчиков температуры, установленных в каждом стержне обмотки. Эти датчики опрашиваются с цикличностью в несколько секунд и контролируются компьютером. При обнаружении превышения температуры вырабатывается звуковой сигнал.

Аналогичная система действует для контроля работы подшипников.

Функции АСУ ТП на ТЭС:

1. сбор информации о параметрах технологического процесса, проверка достоверности и исправности датчиков и связей их с ЭВМ;

2. контроль параметров технологического процесса и сигнализация о выходе за допустимую область или решительном приближении к ней;

3. определение технико-экономических показателей (ТЭП) и ведение ведомости с циклом Dt = 15 мин, считаются удельные расходы, расходы на С.Н. тепла и электроэнергии с итогом по вахтам, суткам до месяца;

4. контроль за экономичностью работы отдельных агрегатов С.Н.;

5. оценка ресурса паропроводов, экранных трубок котла и других элементов. Для оценки ресурса используется информация о температуре;

6. по электрической части: контроль за работой электрической части системы возбуждения, нагрузки по активной и реактивной мощностям генератора;

7. контроль за системой охлаждения обмоток, контроль работы подшипников;

8. контроль частичных разрядов изоляции (осуществляется с помощью датчиков температуры путем контроля высокочастотных сигналов.

На разных ТЭС по инициативе персонала реализуются и другие функции. Например на ТЭЦ-3 в электрической части разработана система по контролю за сборкой схемы блока.

На общестанционном уровне АСУ ТП контролирует работу ОРУ, РУ СН, при этом:

1. отрабатываются бланки переключений;

2. контролируется ресурс выключателей в зависимости от величины тока отключения;

3. оптимизируется распределение нагрузки между блоками;

4. планирование ремонтов;

5. ведение ведомостей ТЭП в целом по станции;

6. контроль за работой общестанционных цехов (хим-водоочистка, топливо-подача и т.п.)

Сегодня используются разные схемы АСУ ТП. В эксплуатации находятся еще первые системы ИВ-500 на блоках 500 МВт (Троицкая ГРЭС), отечественный двухмашинный комплекс на базе СМ.

В настоящее время появилось много поставщиков систем АСУ ТП, в том числе заграничных фирм. Сегодня предпочтение отдается отечественным разработкам. Наиболее продвинутые системы поставляются фирмой КОСМОТРОНИКА (Сургутская ГРЭС, Нижневартовская ГРЭС, Пермская ГРЭС). В системе выполняются функции контроля пуска блоков с автоматизацией некоторых функций, функции оптимизации работы отдельных механизмов С.Н., функции экологического контроля и т.п. Контроль за пуском позволяет сократить время пуска при сохранении допустимых температур напряжений в металле.

АСУ ПЭС

Используется принципиальная схема, как и для электростанций. Источником информации являются УТМ. Среди объектов отсутствует ЭС. УТМ устанавливаются на подстанциях. На важнейших подстанциях – устройства типа ГРАНИТ, на простых – более простые устройства. ОИК обслуживается таким же программным обеспечением, что и в ЭС. Здесь решается специфические для сетей задачи:

– анализ режима (стационарного, расчет токов КЗ, планирование режимов). При этом осуществляется контроль фактического состояния оборудования, учитывающий ресурсы выключателей с учетом контроля нагрева оборудования с помощью тепловизоров;

– задачи оптимизации режима по минимуму потерь в сети;

– задачи контроля достоверности информации, проверки параметров на допустимость.

АСУ ТП подстанций.

Автоматизация их производится в последнюю очередь. Есть несколько путей для автоматизации:

1. Применяется на системных подстанциях, где устанавливается КП УТМ, а для информирования персонала оставлены старые технические средства, т.е. стрелочные приборы. Здесь с помощью специальной техники можно “подслушать” информационную шину и всю информацию ввести в компьютер. Это путь не получил большого распространения.

2. Для создания АСУ ТП подстанций могут использоваться регистраторы электрических сигналов типа “Нева”. Основа регистраторов – блок регистрации и контроля нормальных и аварийных режимов и учета электроэнергии. Этот регистратор позволяет подключать от 16 до 64 сигналов для осциллографирования при сканировании 20-ти точек на период. От 32 до 96 замеряемых действующих значений от преобразователей типа E. От 24 до 288 дискретных сигналов от блок-контактов выключателей, от промежуточных и выходных реле релейной защиты. Дискретные входы могут использоваться и для учета электроэнергии как счетчики импульсов. Это позволяет подключать электронные счетчики с импульсным выходом и индукционные, если они достроены устройством формирования импульсов (УФИ). Регистратор связан с компьютером и через модем информация может передаваться на диспетчерский пункт энергосистемы. Используются средства графического редактирования. Специфические задачи – проверка баланса мощности и энергии, определяется ТЭП, т.е. потерь технических и коммерческих, затрат на обслуживание и себестоимости передачи, или преобразования единицы электрической энергии. Задачи автоматизации регулирования напряжения, аварийной статистики.

Введение. 5

1. Оптимизация режимов энергосистем. 6

1.1. Параметры режима ЭС. 6

1.2. Формулировка задачи оптимизации. 7

1.3. Особенности задачи нелинейного программирования. 8

1.4. Методы безусловной оптимизации. 9

1.4.1. Метод покоординатного спуска. 10

1.4.2. Градиентный метод. 11

1.4.3. Метод случайного поиска. 12

1.4.4. Метод деформированного многогранника. 13

1.5. Оптимизация с учетом ограничений в форме равенств. 13

1.5.1. Метод прямой оптимизации. 13

1.5.2. Метод приведенного градиента. 14

1.5.3. Метод неопределенных множителей Лагранжа. 15

1.6. Оптимизация с учетом ограничений в форме неравенств. 16

1.7. Условия оптимального распределения нагрузки между параллельно работающими блоками. 18

1.8. Характеристики основного оборудования ТЭС. 20

1.9. Характеристики блоков. 23

1.10. Маневренные свойства блока. 24

1.11. Методы распределения нагрузки между блоками на КЭС. 24

1.11.1. Графический метод. 24

1.11.2. Распределение с помощью ЭВМ. 25

1.12. Влияние погрешностей в определении e на пережег топлива. 26

1.13. Условие оптимального распределения в системе с ТЭС. 27

1.14. Условия распределения с учетом федерального оптового рынка энергии и мощности (ФОРЭМ). 28

1.15. Определение удельных приростов потерь. 29

1.16. Мероприятия по снижению потерь в сети. 31

1.17. Распределение нагрузки в системе с ГЭС. 32

1.18. Определение характеристик ГЭС. 33

1.19. Распределение нагрузки в системе с ГЭС. 35

1.19.1. Применение динамического программирования для выбора графика сработки водохранилища для ГЭС. 35

1.20. Оптимизация реактивной мощности в системе. 38

1.21. Комплексная оптимизация режима. 38

1.22. Выбор состава включенного в работу оборудования. 40

1.23. Применение ЭВМ для оптимизации. 41

1.24. Оптимизация надежности. 43

1.24.1. Выбор оптимального резерва. 43

1.24.2. Алгоритм выбора резерва. 45

1.24.3. Определение дискретных рядов аварийного выхода и снижения нагрузки. 46

1.24.4. Ряд снижения нагрузки. 47

1.25. Оптимизация качества электроэнергии. 47

1.26. Интегральный критерий качества. 48

1.27. Определение оптимального напряжения для осветительной нагрузки. 50

2. Автоматизированные системы управления (АСУ). 52

2.1. Энергосистема как объект управления. 53

2.2. Подсистемы АСУ ТП. 53

2.3. Подсистемы технического обеспечения. 54

2.3.1. Датчики электрических параметров. 55

2.3.2. Счетчики. 56

2.3.3. Устройства преобразования информации. 56

2.3.4. Средства связи в АСУ и телемеханика. 57

2.3.5. Регистраторы событий. 60

2.3.6. Автоматизированные системы контроля и учета электроэнергии (АСКУЭ). 61

2.3.7. Средства отображения информации. 61

2.3.8. Информационное обеспечение. 61

2.4. Подсистемы программного обеспечения АСУ. 63

2.5. АСУ ТП ТЭС. 67

2.6. АСУ ПЭС.. 70

2.7. АСУ ТП подстанций. 70

2.8. Контроль за работой ПЭ энергосистемы. 71


Введение

Эксплуатация энергосистем связана с большими затратами и, в первую очередь, с затратами на топливо. Запасы органического топлива на Земле сокращаются, поэтому растут цены на топливо и обостряется проблема повышения эффективности процессов производства, передачи и распределения энергии. Завершившаяся реструктуризация Единой Энергосистемы России и разделение ее на компании создают условия для развития конкуренции в сферах генерации и сбыта. Но с технической точки зрения и с позиций управления энергосистема остается единой.

Сложности управления энергетикой сегодня связаны с тем, что существенно сокращены инвестиции и изношено основное оборудование.

Все это требует дальнейшего развития и совершенствования современных способов управления, использующих математические методы и ЭВМ. Упрощенная схема управления показана на рис. 1.1.

X – вектор внешних воздействий на систему;

Y – вектор параметров режима;

Z – критерий управления, формализующий основные цели функционирования энергосистемы;

U – вектор управления.

Функциональные зависимости Y(X,U), Z(X,Y,U).

Рис. 1.1. Цель управления Z®extr.

ЭВМ используется здесь как средство для автоматизации человеческой деятельности по управлению. Поэтому такие системы называются автоматизированными системами управления (АСУ).

Введение и эксплуатация АСУ требует больших капиталовложений. Окупаются эти вложения за счет снижения эксплуатационных расходов путем снижения расходов топлива, повышения надежности и улучшения качества поставляемой энергии.

И хотя относительная экономия затрат на топливо составляет обычно не более 1,5 – 2 %, в абсолютном исчислении она дает вполне ощутимые результаты.

Значительный эффект в системах достигается за счет постоянного контроля состояния и снижения аварийности.


Оптимизация режимов энергосистем

Проблема оптимизации режимов энергосистем получила полное становле-ние и развитие за последние 30 лет, хотя первые теоретические исследования в этой области были начаты в Советском Союзе значительно раньше. Еще тогда были установлены принципы оптимального распределения активных мощностей между агрегатами на станциях и станциями в системе, базирующиеся на сопоставлении удельных приростов расходов условного топлива. Были установлены критерии оптимального распределения активных мощностей в энергосистемах при учете влияния потерь активной мощности в сетях и при ограничении энергоресурсов.

Уже на этапе, когда была признана необходимость учета потерь активной мощности в сетях при оптимизации режима, стала очевидной невозможность не только оперативной оптимизации, но даже и предварительных расчетов оптимального режима энергосистем без применения вычислительной техники. В связи с этим много внимания уделялось специализированным аналоговым вычислительным устройствам, которые, однако, были вытеснены универсальными цифровыми вычислительными машинами.

В настоящее время для различных задач оптимизации режима накоплен определенный опыт разработки и сопоставления методов, а также практических расчетов в электроэнергетических системах. Наиболее часто решаются задачи оптимизации режима систем по активной мощности и режима электрической сети, т.е. оптимизации по напряжению, реактивной мощности и коэффициентам трансформации (U, Q и Кт), а также более общая задача комплексной оптимизации режима электроэнергетических систем. Эти задачи решаются при оперативном и автоматическом, т.е. в темпе процесса, управлении режимами электроэнергетических систем и сетей.

Накопленный опыт решения задач оптимизации режима на ЭВМ показывает, что для этих задач наиболее эффективно применение метода приведенного градиента при расчете установившегося режима методом Ньютона.

Задачи оптимизации режимов

Оптимальное управление нормальными режимами в энергетической системе заключается в том, чтобы за рассматриваемый отрезок времени обеспечить надежное электроснабжение потребителя электрической энергией требуемого качества (т.е. при соблюдении требуемых ограничений) при минимально возможных эксплуатационных затратах в системе.

Исключительная сложность оптимального управления режимами определяется не только чрезвычайно большим количеством управляемых элементов, но и тем, что разные регулируемые и настраиваемые параметры следует поддерживать в процессе работы системы оптимальными на большой территории.

Оптимизация режима электроэнергетических систем производится всеми инженерами, связанными с расчетами и практической реализацией функционирования электрической системы. Этим занимаются проектировщики, работники служб режимов, диспетчеры энергосистем, оперативный технический персонал электростанций и электросетей.

Задача комплексной оптимизации режима состоит в определении оптимальных значений всех параметров режима при учете технических ограничений. Это задача нелинейного программирования с ограничениями в виде уравнений установившегося режима и нелинейных неравенств. Переменные в задаче этого типа непрерывны.

При комплексной оптимизации режима определяются оптимальные значения активных и реактивных мощностей генерирующих источников, модулей и фаз напряжений в узлах, коэффициентов трансформации при учете технических ограничений на значения модулей узловых напряжений, углов сдвига фаз на дальних передачах, токов и потоков мощности в линиях, Р и Q генераторов и т.д.

Оптимальный режим должен быть допустимым, т.е. удовлетворять условиям надежности электроснабжения и качества электроэнергии, и, кроме того, наиболее экономичным среди допустимых режимов. Условия надежности электроснабжения и качества электроэнергии при расчетах допустимых режимов учитывают ограничения в виде равенств и неравенств на контролируемые параметры режима. Наиболее экономичный режим - это такой из допустимых, при котором обеспечивается минимум суммарного расхода условного топлива (или издержек) при заданной в каждый момент времени нагрузке потребителей, т.е. при заданном полезном отпуске электроэнергии.

С повышением энергии, вкладываемой в нагрев, происходит увеличение глубины закаленного слоя. Однако, эта закономерность действует лишь до момента видимого оплавления поверхности. С появлением на облученном участке кратеров глубина упрочненного слоя если и увеличивается, то обязательно с нарушением равномерности ее распределения по пятну обработки. Это явление может выступать в качестве ограничивающего фактора при назначении режима лазерной закалки. Другим важным фактором, определяющим качество обработки, является неопределенность в равенстве посылаемой на поверхность энергии и энергии, которая поглощена этой поверхностью. Поскольку универсальных номограмм для учета поглощающих характеристик различных поверхностей не построено, приходится чисто эмпирически, по результатам упрочнения подбирать корреляционные связи между лабораторным экспериментом и облучением в реальных производственных условиях. Причем на уровень данных связей влияет не только физическое и химическое состояние облучаемой поверхности, но и технические особенности лазерной аппаратуры, погрешности контрольно-измерительных приборов.

Выбор критической энергии лазерного излучения при обработке с разным диаметром пятна закалки проводят следующим образом. При фиксированном диаметре пятна закалки выполняют импульсную лазерную термообработку поверхности исследуемых образцов при различной энергии излучения ОКГ. Та энергия, превышение которой приводит к нарушению шероховатости поверхности, считается критической.

Для достижения надежности результатов упрочнения, как правило, необходимо корректировать типовые режимы облучения применительно к конкретному изделию и энергетическим характеристикам конкретной лазерной установки. Одинаковый по типу и размерам инструмент из одной и той же марки стали, но изготовленный и прошедший объемную термообработку на разных предприятиях, имеет различную поглощательную способность. Поэтому при обработке с одним уровнем энергии эффект лазерной закалки будет различным. Для стабилизации коэффициента поглощения и выравнивания эффектов необходимо применять предварительное химическое травление поверхности или покрытие ее тонким слоем какого-либо вещества. Стабилизация поглощения не избавляет от необходимости привязывать назначаемые режимы облучения к используемой лазерной установке. Как известно, устройство технологических установок таково, что управление энергией излучения осуществляется изменением напряжения накачки. Эта зависимость определяется качеством юстировки и кондиционностью оптических элементов, поэтому у разных установок она неодинакова. Более того, по мере разъюстировки оптического блока и накопления дефектов в оптических элементах энергия излучения может резко снижаться. Следовательно, контрольным параметром служит не устанавливаемая на лазерной установке величина (напряжение накачки), а измеряемая с помощью дополнительного прибора характеристика (энергия излучения). Учитывая схему и возможные погрешности в измерении энергии становится очевидным, что точность фиксирования этой величины на разных установках может быть различной. Другой причиной корректировки режимов облучения является несовершенство контроля степени расфокусировки пятна облучения.



Основные параметры процесса лазерной обработки материалов приведены на рисунке 4.

При разработке технологических режимов упрочнения сталей и сплавов выбраны следующие характеристики лазерного излучения:

Средняя за импульс плотность мощности излучения;

Длительность импульса;

Дефокусировка лазерного пучка, то есть смещение облучаемой поверхности на определенное расстояние от фокальной плоскости объектива оптической системы лазера;

Коэффициент перекрытия пятен дискретного лазерного упрочнения, то есть степень перекрытия пятен в ряду (рисунок 5).

ненной зоны, полученной от действия предыдущего импульса, подвергается новому нагреву.

В той части пятна, где температура повторного нагрева не превышала точку АС 1 , происходит скоростной отпуск ранее возникшей аустенитно-мартенситной структуры с образованием участков металла с повышенной травимостью и пониженными значениями твердости (рисунок 5, б, рисунок 6).

Выбор степени перекрытия пятен облучения для различных условий изнашивания проводили с учетом зависимости размеров закаленной и отпущенной зон от коэффициента перекрытия (рис. 7), а также в соответствии с положениями, вытекающими из теоретической трактовки правила Шарпи. При этом учитывали, что увеличению износостойкости в условиях граничного трения способствует достижение при лазерной обработке неоднородного структурного состояния как обширных поверхностей, так и отдельно взятого пятна, что связано с образованием при изнашивании рельефа, повышающего маслоемкость сопряжений при несовершенном смазывании. Напротив, максимальная износостойкость в условиях трения без смазки наблюдается при возможно большей степени упрочнения материала, относительной однородности и дисперсности структурных составляющих упрочненного слоя. В этом случае рекомендуется лазерная закалка при частичном наложении пятен облучения.

Установлено, что для получения достаточных размеров участков упрочненного металла облучение следует вести при коэффициентах перекрытия, превышающих 0,2.

От выбора значения коэффициента перекрытия зависит равномерность упрочненного слоя по глубине и производительность процесса линейного лазерного облучения. Металлографический анализ упрочненных с разными коэффициентами перекрытия участков показал, что наибольшая равномерность слоя по глубине достигается при коэффициенте перекрытия пятен 0,4-0,5.

На рисунке 8. приведены экспериментально полученные зависимости твердости и глубины упрочненного слоя на стали Р6М5 при облучении с длительностью импульса t имп ~1× 10 -3 с и t имп ~6× 10 -3 с, которыми можно пользоваться при выборе режимов лазерной обработки инструмента с корректировкой на технологические особенности лазерной установки и химический состав облучаемой стали.

Следует отметить, что одной из особенностей работы пар трения является неравномерность их изнашивания по поверхности контакта сопряженных деталей или детали и инструмента, которая вызывается неравномерностью рабочих давлений и скоростей скольжения, многократными смещениями контактирующих поверхностей друг относительно друга, повторными приложениями нагрузки. Это приводит к дополнительным пластическим деформациям, к контактному усталостному разрушению неровностей сопряженных поверхностей и вызывает быструю потерю работоспособности.

В этой связи перспективной является лазерная обработка, с помощью которой осуществляется создание закономерно изменяющегося состояния поверхностных слоев сопряженных изделий с целью обеспечения равномерного и минимального по величине износа по всей поверхности контакта на основе экспериментального и теоретического определения закономерностей его изнашивания.

Технологически это обеспечивается лазерной обработкой с изменяющимися режимами в процессе упрочнения вдоль поверхности контакта и позволяет сохранять первоначальную геометрическую форму, определяющую работоспособность инструмента, повысить эксплуатационные свойства.

Для каждого конкретного инструмента и детали машин данные о коэффициенте перекрытия пятен, расфокусировке луча, плотности мощности излучения фиксируются в технологических картах.

Производственные испытания опытных партий металлообрабатывающего инструмента и технологической оснастки различного функционального назначения показали, что лазерное упрочнение и легирование повышают их стойкость в 2-5 раз и позволяют получить значительный экономический эффект при внедрении технологических процессов в производство.

1. Цель работы.

2. Краткая характеристика изученного способа термической обработки сталей и сплавов.

3. Общие принципы выбора схем лазерной термообработки для инструмента различного функционального назначения.

4. Основные параметры оптимизации режимов лазерной поверхностной обработки.

5. Выводы на основании полученных результатов.

КОНТРОЛЬНЫЕ ВОПРОСЫ.

1. Какой предварительной обработке подвергаются изделия перед проведением лазерной термообработки?

2. Обоснуйте выбор схем лазерного облучения отрезных резцов, концевых фрез и вырубных штампов.

3. Каким образом проводится корректировка режимов лазерной обработки для инструмента различного функционального назначения?

4. Перечислите основные параметры процесса лазерной термообработки материалов.

5. Как зависят результаты лазерного упрочнения от коэффициента перекрытия облученных пятен?

6. Объясните зависимость твердости упрочненных зон от плотности мощности лазерного излучения.

Поделиться