Гальваническая развязка перевертыш. Быстрое переключение и гальваническая развязка: оптоэлектронные реле ОТ IR

Для коммутации нагрузок в цепях переменного тока в последнее время все чаще стали применяться схемы с использованием мощных полевых транзисторов. Этот класс приборов представлен двумя группами. К первой отнесены биполярные транзисторы с изолированным затвором – БТИЗ. Западная аббревиатура – IGBT.

Во вторую, самую многочисленную вошли традиционные полевые (канальные) транзисторы. К этой группе относятся и транзисторы КП707 (см. таблицу 1), на которых и собран коммутатор нагрузки для сети 220 вольт.

Первична сеть переменного тока очень опасная вещь во всех отношениях. Поэтому существует много схемных решений, позволяющих избежать управления нагрузками в сети напрямую. Ранее для этих целей использовались разделительные трансформаторы, в настоящее время им на смену пришли разнообразные оптроны.

Транзисторный ключ с оптической развязкой

Схема, ставшая уже типовой, показана на рисунке 1.


Данная схема позволяет гальванически развязать управляющие цепи и цепь первичной сети 220 вольт. В качестве развязывающего элемента применен оптрон TLP521. Можно применить и другие импортные или отечественные транзисторные оптроны. Схема простая и работает следующим образом. Кода напряжение на входных клеммах равно нулю, светодиод оптрона не светится, транзистор оптрона закрыт и не шунтирует затвор мощных коммутирующих транзисторов. Таким образом, на их затворах присутствует открывающее напряжение, равное напряжению стабилизации стабилитрона VD1. В этом случае транзисторы открыты и работают по очереди, в зависимости от полярности напряжения в данный момент времени. Допусти, на выходном выводе схемы 4 присутствует плюс, а на клемме 3 – минус. Тогда ток нагрузки потечет от клеммы 3 к клемме 5, через нагрузку к клемме 6, далее через внутренний защитный диод транзистора VT2, через открытый транзистор VT1 к клемме 4. При смене полярности питающего напряжения, ток нагрузки потечет уже через диод транзистора VT1 и открытый транзистор VT2. Элементы схемы R3, R3, C1 и VD1 не что иное, как безтрансформаторный источник питания. Номинал резистора R1 соответствует входному напряжению пять вольт и может быть изменен при необходимости.

Вся схема выполнена в виде функционально законченного блочка. Элементы схемы установлены на небольшой П-образной печатной плате, показанной на рисунке 2.


Сама плата одним винтом крепится к пластине из алюминия с размерами 56×43х6 мм, являющейся первичным теплоотводом. К ней же через теплопроводную пасту и слюдяные изолирующие прокладки с помощью винтов с втулками крепятся и мощные транзисторы VT1 и VT2. Угловые отверстия сверятся и в плате и в пластине и служат, при необходимости, для крепления блока к другому более мощному теплоотводу.

В этой статье речь пойдет в первую очередь об оптической развязке аналогового сигнала. Будет рассматриваться бюджетный вариант. Также основное внимание уделяется быстродействию схемотехнического решения.

Способы развязки аналогового сигнала

Небольшой обзор. Существует три основных способа гальванической развязки аналогового сигнала: трансформаторный, оптический и конденсаторный. Первые два нашли наибольшее применение. На сегодняшний день существует целый класс устройств, которые называются изолирующие усилители или развязывающие усилители (Isolated Amplifier). Такие устройства передают сигнал по средствам его преобразования (в схеме присутствует модулятор и демодулятор сигнала).

Рис.1. Общая схема изолирующих усилителей.

Есть устройства как для передачи аналогового сигнала по напряжению (ADUM3190, ACPL-C87), так и специализированные, для подключения непосредственно к токовому шунту (SI8920, ACPL-C79, AMC1200). В данной статье мы не будем рассматривать дорогие устройства, однако перечислим некоторые из них: iso100, iso124, ad202..ad215 и др.

Существует также другой класс устройств – развязывающие оптические усилители с линеаризующей обратной связью (Linear Optocoupler) к этим устройствам относятся il300, loc110, hcnr201. Принцип действия этих устройств легко понять, посмотрев на их типовую схему подключения.

Рис.2. Типовая схема для развязывающих оптических усилителей.

Подробнее о развязывающих усилителях вы можете почитать: А. Дж. Пейтон, В. Волш «Аналоговая электроника на операционных усилителях» (глава 2), также будет полезен документ AN614 «A Simple Alternative To Analog Isolation Amplifiers» от silicon labs, там есть хорошая сравнительная таблица. Оба источника есть в интернете.

Специальные микросхемы оптической развязки сигнала

Теперь к делу! Для начала сравним три специализированных микросхемы: il300, loc110, hcnr201. Подключенные по одной и той же схеме:

Рис.3. Тестовая схема для il300, hc n r201 и loc110.

Разница только в номиналах для il300, hcnr201 R1,R3=30k, R2=100R, а для loc110 10k и 200R соответственно (я подбирал разные номиналы чтобы добиться максимального быстродействия, но при этом не выйти за допустимые пределы, например, по току излучающего диода). Ниже приведены осциллограммы, которые говорят сами за себя (здесь и далее: синий – входной сигнал, желтый — выходной).

Рис.4. Осциллограмма переходного процесса il300.

Рис.5. Осциллограмма переходного процесса hcnr201.

Рис.6. Осциллограмма переходного процесса loc 110.

Теперь рассмотрим микросхему ACPL-C87B (диапазон входного сигнала 0..2В). Честно говоря с ней я провозился достаточно долго. У меня в наличии было две микросхемы, после того как получил неожиданный результат на первой, со второй обращался очень аккуратно, особенно при пайке. Собирал всё по схеме, указанной в документации:

Рис.7. Типовая схема для ACPL C 87 из документации.

Результат один и тот же. Подпаивал керамические конденсаторы непосредственно вблизи ножек питания, менял ОУ (естественно проверял его на других схемах), пересобирал схему и т.д. В чем собственно загвоздка: выходной сигнал имеет значительные флуктуации.

Рис.8. Осциллограмма переходного процесса ACPL C 87.

Несмотря на то, что производитель обещает уровень шума выходного сигнала 0.013 mVrms и для варианта «B» точность ±0.5%. В чем же дело? Возможно ошибка в документации, поскольку с трудом верится в 0.013 mVrms. Непонятно. Но посмотрим в графу Test Conditions/Notes напротив Vout Noise и на Рис.12 документации:

Рис.9. Зависимость уровня шума от величины входного сигнала и частоты выходного фильтра.

Здесь картина немного проясняется. Видимо производитель говорит нам о том, что мы можем задушить эти шумы через ФНЧ. Ну что ж, спасибо за совет (иронично). Зачем вот только всё это таким хитрым образом вывернули. Скорее всего понятно зачем. Ниже приведены графики без и с выходным RC фильтром (R=1k, C=10nF (τ=10µS))

Рис.10. Осциллограмма переходного процесса ACPL C 87 без и с выходным фильтром.

Применение оптопар общего назначения для развязки сигнала

Теперь перейдем к самому интересному. Ниже приведены схемы, которые я нашел в интернете.

Рис.11. Типовая схема оптической развязки аналогового сигнала на двух оптопарах.

Рис.12. Типовая схема оптической развязки аналогового сигнала на двух оптопарах.

Рис.13. Типовая схема оптической развязки аналогового сигнала на двух оптопарах.

Такое решение имеет как преимущества, так и недостатки. К преимуществу отнесем большее напряжение изоляции, к недостаткам то, что две микросхемы могут значительно отличаться по параметрам, поэтому кстати рекомендуется использовать микросхемы из одной партии.

Я собрал эту схему на микросхеме 6n136:

Рис.14. Осциллограмма переходного процесса развязки на 6 N 136.

Получилось, но медленно. Пробовал собирать и на других микросхемах (типа sfh615), получается, но тоже медленно. Мне надо было быстрее. К тому же часто схема не работает из-за возникающих автоколебаний (в таких случаях говорят САР неустойчива))) Помогает увеличение номинала конденсатора С2 рис. 16.

Один знакомый посоветовал отечественную оптопару АОД130А . Результат на лицо:

Рис.15. Осциллограмма переходного процесса развязки на АОД130А.

А вот и схема:

Рис.16: Схема развязки на АОД130А.

Потенциометр нужен один (RV1 или RV2) в зависимость от того будет выходной сигнал меньше или больше входного. В принципе можно было поставить только один RV=2k последовательно с R3=4.7k, ну или вообще оставить только RV2=10k без R3. Принцип понятен: иметь возможность подстройки в районе 5k.

Микросхема трансформаторной развязки сигнала

Перейдем к трансформаторному варианту. Микросхема ADUM3190 в двух вариантах на 200 и 400 кГц (у меня на 400 — ADUM3190TRQZ), также есть микросхема на более высокое напряжение изоляции ADUM4190. Замечу, корпус самый маленький из всех – QSOP16. Выходное напряжение Eaout от 0.4 до 2.4В. В моей микросхеме выходное напряжение смещения около 100мВ (видно на осциллограмме рис. 18). В целом работает неплохо, но лично меня несовсем устраивает выходной диапазон напряжения. Собрано по схеме из документации:

Рис.17. Схема ADUM3190 из документации.

Немного осциллограмм:

Рис.18. Осциллограмма переходного процесса ADUM3190.

Итоги

Подведем итог. На мой взгляд наилучшим вариантом является схема на отечественных АДО130А (где они их только взяли?!). Ну и напоследок небольшая сравнительная таблица:

Микросхема tr+задерж. (по осцилл.), мкс tf+задерж. (по осцилл.), мкс Диап. напряж., В Напряж. изоляции, В Шум (по осцилл.) мВп-п. Цена** за шт., р (05.2018)
IL300 10 15 0-3* 4400 20 150
HCNR201 15 15 0-3* 1414 25 150
LOC110 4 6 0-3* 3750 15 150
ACPL-C87B 15 15 0-2 1230 нд 500
6N136 10 8 0-3* 2500 15 50
АОД130А 2 3 0.01-3* 1500 10 90
ADUM3190T 2 2 0.4-2.4 2500 20 210

*- приблизительно (по собранной схеме с оптимизацией по быстродействию)

**- цена средняя по минимальным.
Ярослав Власов

P.S. АОД130А производства ОАО «Протон» (с гравировкой их логотипа в черном корпусе) — хороший. Старые (90х годов в коричневом корпусе) не годятся.

Судя по нескольким недавним постам, неплохо бы осветить, что такое гальваническая развязка и зачем она нужна. Итак:

Гальваническая развязка - передача энергии или сигнала между электрическими цепями без электрического контакта между ними.

А теперь, давайте на примерах:)
Пример 1. Сеть
Чаще всего о гальванической развязке говорят применительно к сетевому питанию, и вот почему. Представьте себе, что вы ухватились рукой за провод из розетки. Ваше «подключение» с точки зрения электричества выглядит вот так:

И, да, тока утечки тапочек вполне хватит, чтобы вы почувствовали «удар» при прикосновении к «фазовому» проводу сети. Если тапочки сухие, то такой «удар», обычно, безвреден. Но, если вы стоите босяком на влажном полу, последствия могут быть весьма плачевными.

Совсем другое дело, если в схеме присутствует трансформатор:

Если прикоснуться к одному из выводов трансформатора, через вас ток не потечет - ему просто некуда течь, второй вывод трансформатора висит в воздухе. Если, конечно, схватиться за оба вывода трансформатора, и он выдает достаточное напряжение, то долбанет и так.

Итак, в данном случае, трансформатор обеспечивает гальваническую развязку. Кроме трансформатора есть еще куча разных способов передать сигнал, не создавая электрического контакта:

  • Оптический: оптопары, оптоволокно, солнечные батареи
  • Радио: приемники, передатчики
  • Звуковой: динамик, микрофон
  • Емкостный: через конденсатор очень маленькой емкости
  • Механический: мотор-генератор
  • Можно еще понавыдумывать
Пример 2. Осциллограф
Есть прямо мега-классический способ взорвать пол-схемы. На форуме даже есть соответствующий . Дело в том, что многие забывают, что осциллограф (и многое другое оборудование) соединен с землей. Вот как выглядит полная картина при подключении осциллографа в схему, питающуюся прямо от сети:

Запомните - как только вы что-то подключаете в схему, оно становится частью схемы! Это справедливо и для различного измерительного оборудования.

Правильный способ измерить в что-то в такой схеме - подключить ее через развязывающий трансформатор 220->220:

Готовые трансформаторы 220->220 найти довольно сложно. Поэтому, можно использовать так называемые перевертыши. Перевертыш - это два трансформатора, к примеру 220->24, выключенные последовательно вот так:

Как это выглядит на практике, вы наверняка видели в :

Перевертыши - это даже лучше, чем один трансформатор 220->220.

  • Они обеспечивают вдвое меньшую емкость между входом и выходом
  • Среднюю часть можно заземлить, и, таким образом очень неплохо отфильтровать помехи из сети
  • Можно включить 3 трансформатора, и тогда можно получить 440 или 110 вольт
Естественно, чем больше напряжение на выходе трансформаторов, тем меньше тока течет и тем лучше.
Песенка
Давным давно я на тему гальванической развязки даже песенку записал. Песенка под спойлером.

Песня, ее текст и объяснения

Эту мини-песенку я записал когда я занимался разной аудио-электроникой. Один товарисч сделал ламповую гитарную примочку и, подумав, что трансформатор который превращает 220 в 220 совершенно бесполезен, выбросил его из схемы, за что и поплатился. Я подумал, что это - вполне себе тема для метальной мини-песенки.

Привет, Олдфаг! Твой браузер не поддерживает html5! Обновись!

Ты не поставил трансформатор анодный
Запитал непосредственно из сети
Под ногой была батарея
А рукой гитару схватил ты

Ток пронзает бренное тело
Извивается бренная плоть
Ты не можешь разжать свою руку
Ты один и никто не может помочь

Разрывая и выжигая
Электроны сжимают сердце твое
Будет биться или утихнет?
Безопасность, запомни, превыше всего.


Кстати, кроме развязки в этой мелкой песенке еще два неплохих совета:
  • Да, все работы с сетевым напряжением нужно выполнять как минимум вдвоем.
  • Когда бьет током, рука сжимается, поэтому, сначала к приборам лучше прикасаться тыльной стороной правой руки.
Заключение
Естественно, на этом тема развязки не заканчивается. К примеру, через развязку очень сложно передавать быстрые сигнал. Но про это - немного попозже.

Компания International Rectifier — разработчик и производитель силовой электроники с 1947 года — выпускает огромную номенклатуру оптореле для всевозможных применений. Наиболее популярные из них можно условно разделить на следующие группы:

  • Быстродействующие (PVA, PVD, PVR);
  • Общего назначения (PVT);
  • Низковольтные средней мощности (PVG, PVN);
  • Высоковольтные мощные (PVX).

PVA33: быстродействующее реле
для коммутации сигналов

Реле переменного тока серии PVA33 — однополюсное, нормально разомкнутое. Предназначено для общих целей коммутации аналоговых сигналов.

Принцип действия устройства — следующий (рис. 1). Напряжение, подаваемое на вход реле, вызывает протекание тока через арсенидо-галлиевый светодиод (GaAlAs), что приводит к интенсивному свечению последнего. Световой поток попадает на интегральный фотогальванический генератор (ФГГ), который создает разницу потенциалов между затвором и истоком выходного ключа, тем самым переводя последний в проводящее состояние. В качестве силовых выходных ключей применены силовые МОП-транзисторы (HEXFET — запатентованная IR технология). Таким образом достигается полная гальваническая изоляция входных цепей от выходных.

Рис. 1.

Преимущества подобного решения по сравнению с обычными электромеханическими и герконовыми реле состоит в значительном повышении срока службы и быстродействия, уменьшении потерь мощности, минимизации размеров. Эти преимущества позволяют повысить качество разрабатываемой продукции для различных применений, например, в области мультиплексирования сигналов, автоматического испытательного оборудования, систем сбора данных и других.

Уровень напряжений, который способен коммутировать реле этой серии, лежит в диапазоне от 0 до 300 В (амплитудное значение) как переменного, так и постоянного тока. При этом минимальный уровень определяется (при постоянном токе) сопротивлением канала выходных транзисторов, которое составляет в среднем около 1 Ом (максимально до 20 Ом).

Динамические характеристики устройства определяются временем включения-выключения, составляющим порядка 100 мкс. Таким образом, гарантированная частота переключений реле может достигать 500 Гц и более.

Максимальная частота коммутируемого сигнала зависит в основном от частотных характеристик применяемых транзисторов и для МОП-ключей достигает сотен килогерц. Реле поставляются в 8-выводных DIP-корпусах и доступны в двух вариантах: для монтажа в отверстия и для поверхностного монтажа.

PVT312: телекоммуникационное реле
общего назначения

Фотоэлектрическое реле PVT312, однополюсное, нормально разомкнутое, может быть использовано как на постоянном, так и на переменном токе.

Это твердотельное реле специально разработано для применения в телекоммуникационных системах. Реле серии PVT312L (с суффиксом «L») используют активную схему ограничения тока, что позволяет им выдерживать всплески токов переходных процессов. PVT312 выпускается в 6-контактном DIP-корпусе.

Применение: телекоммуникационные ключи, пусковые механизмы, общие схемы переключения.

Схемы подключения могут быть трех типов (рис. 2). В первом случае два ключа микросхемы подключаются последовательно. Это позволяет за счет симметрии получившийся схемы коммутировать переменное напряжение. Такая схема называется включением типа «А». Тип «В» отличается тем, что используется только один из двух ключей микросхемы. Это позволяет коммутировать больший, однако, уже только постоянный ток. В третьем варианте (тип «С») ключи подключаются параллельно, тем самым увеличивая максимально возможное значение тока.


Рис. 2.

PVG612: низковольтное реле средней
мощности для переменного тока

Фотоэлектрические реле серии PVG612 — однополярные, нормально разомкнутые твердотельные реле. Компактные устройства серии PVG612 используются для изолированного переключения токов до 1 А с напряжением от 12 до 48 В переменного или постоянного тока.

Реле этого типа интересны тем, что они способны коммутировать относительно большие (для данного типа устройств) переменные токи, при этом сохраняя скорость работы, присущую решениям на МОП-транзисторах.

PVDZ172N: низковольтное средней
мощности для постоянного тока

Реле данной серии (рис. 3), в отличие от вышеописанных, предназначены для коммутации токов только постоянной полярности силой до 1,5 А и напряжением до 60 В. Например, эти реле находят применение в управлении осветительными приборами, двигателями, нагревательными элементами и т.д.

Рис. 3.

PVDZ172N выпускаются нормально разомкнутыми в однополюсном исполнении в 8-выводных DIP-корпусах.

Остальные возможные сферы применения: аудиоаппаратура, источники питания, компьютеры и периферийные устройства.

PVX6012: для больших нагрузок

Для больших низкочастотных нагрузок компания IR предлагает фотоэлектрическое реле PVX6012 (рис. 4) (однополюсное, нормально разомкнутое). В устройстве использован выходной ключ на базе биполярного транзистора с изолированным затвором (IGBT), что позволило получить малое падение напряжения в открытом состоянии и низкие токи потерь в закрытом при достаточно высокой скорости работы (7 мс — включение/1мс — выключение).

Рис. 4.

PVX6012 выпускается в 14-контактном DIP-корпусе, в котором, что интересно, используется всего четыре вывода — такое решение позволяет обеспечивать лучшее охлаждение устройства.

Основные сферы применения включают в себя: тестовое оборудование; промышленный контроль и автоматизацию; замену электромеханических реле; замену ртутных реле.

PVI: фотоизолятор для внешних
ключей большой мощности

Приборы этой серии не являются реле в собственном смысле слова. То есть не способны коммутировать потоки большой энергии с помощью малой. Они лишь обеспечивают гальваническую развязку входа от выхода, откуда и их название — фотоэлектрический изолятор (рис. 5).


Рис. 5.

Зачем же нужно такое «недореле»? Дело в том, что приборы серии PVI вырабатывают при получении входного сигнала электрически изолированное постоянное напряжение, которое достаточно для непосредственного управления затворами мощных MOSFET и IGBT. Фактически это оптореле, но без выходного ключа, в качестве которого разработчик может использовать подходящий для него по мощности отдельный транзистор.

PVI идеально подходят для применений, требующих высокотокового и/или высоковольтного переключения с оптической изоляцией между схемой управления и мощными схемами нагрузки.

К тому же изолятор серии PVI1050N содержит в себе два одновременно управляемых выхода, что дает возможность подключать их последовательно или параллельно для обеспечения более высокого значения тока управления (МОП) или более высокого значения напряжения управления (БТИЗ). Таким образом фактически можно получить выходной сигнал 10 В/5 мкА при последовательном включении и 5 В/10 мкА — при параллельном.

Два выхода PVI1050N могут применяться и по отдельности, при условии что разность потенциалов между выходами не превышает 1200 В (пост.) Изоляция вход-выход составляет 2500 В (действ.).

Приборы данной серии выпускаются в 8-выводных DIP-корпусах и находят применение в организации управления мощными нагрузками, преобразователях напряжения и т.п.

PVR13: двойное быстродействующее реле

Главной особенностью данной серии является наличие двух независимых реле в одном корпусе (рис. 6), каждое из которых может быть включено по типу «А», «В», или «С» (объяснение типов см. выше в описании PVT312). Максимальное напряжение коммутации 100 В (пост./перем.), ток 300 мА. В остальном данное реле по области применения и характеристикам близко к PVA33 и предназначено также для коммутации аналоговых сигналов средней частоты (до сотен килогерц).

Рис. 6.

Выпускаются в 16-контактных DIP-корпусах с выводами для монтажа в отверстия.

Основные характеристики оптоэлектронных реле IR представлены в таблице 1.

Таблица 1. Параметры оптоэлектронных реле компании IR

Характеристики PVA33 PVT312 PVG612N PVDZ172N PVX6012
Входные характеристики
Минимальный ток управления, мА 1…2 2 10 10 5
Макс. ток управления для нахождения в закрытом состоянии, мА 0,01 0,4 0,4 0,4 0,4
Диапазон управляющего тока (необходимо ограничение тока!), мА 5…25 2…25 5…25 5…25 5…25
Максимальное обратное напряжение, В 6 6 6 6 6
Выходные характеристики
Рабочий диапазон напряжения, В 0…300 0…250 0…60 0…60 (пост.) 280 (пер.)/400 (пост.)
Максимальный длительный ток нагрузки при 40°С, А 0,15 - - 1,5 1
А соед. (пост или перем) - 0,19 1 - -
В соед. (пост.) - 0,21 1,5 - -
С соед. (пост.) - 0,32 2 - -
Максимальный импульсный ток, А - - 2,4 4 не повтор. 5 А (1 сек)
Сопротивление в открытом состоянии, не более, Ом 24 - - 0,25 -
А соед. - 10 0,5 - -
В соед. - 5,5 0,25 - -
С соед. - 3 0,15 - -
Сопротивление в закрытом состоянии, не менее, МОм 10000 - 100 100 -
Время включения, не более. мс 0,1 3 2 2 7
Время выключения, не более, мс 0,11 0,5 0,5 0,5 1
Выходная емкость, не более, пФ 6 50 130 150 50
Скорость нарастания напряжения, не менее, В/мкс 1000 - - - -
Прочее
Электрическая прочность изоляции «вход-выход», В (СКВ) 4000 4000 4000 4000 3750
Сопротивление изоляции, вход-выход, 90 В пост.напр., Ом 1012 1012 1012 1012 1012
Емкость «вход-выход», пФ 1 1 1 1 1
Максимальная температура пайки контактов, °С 260 260 260 260 260
Рабочая температура, °С -40…85 -40…85 -40…85 -40…85 -40…85
Температура хранения,°С -40…100 -40…100
-40…100
-40…100 -40…100

Применение оптоэлектронных реле IR

Системы управления. В интерфейсах АСУ одной из актуальных проблем является организация связи между управляющей и коммутируемой цепью с обеспечением надежной гальванической развязки. То есть необходимо организовать передачу информации (например, сигнала исполнительному устройству) без электрического контакта. Одними из первых устройств подобного рода были электромеханические реле, в которых информация передавалась посредством магнитного поля. Однако наличие механических частей приводило к искрению контактов и низкому быстродействию таких систем.

Применение передачи сигнала через световой поток (оптоэлектронные реле) в интерфейсах АСУ (рис. 7) по сравнению с электромеханическими коммутаторами обеспечивает более высокие показатели по надежности, скорости переключения, долговечности, лучшие массогабаритные показатели; а преимущество в сравнении с электронными коммутаторами — отсутствие общей точки и взаимного влияния цепей при коммутации.

Рис. 7.

Наличие в системе управления гальванической развязки является одним из важных свойств коммутатора, т.к. позволяет создавать отдельные потоки управления, что, в свою очередь, дает возможность обеспечивать электрическую независимость информационной и исполнительной зон системы. Оптическая гальваническая развязка изолирует микроэлектронную управляющую аппаратуру от сильноточных и высоковольтных цепей периферийных исполняющих устройств, что приводит к повышению помехоустойчивости, срока службы и снижению цены такой аппаратуры.


Рис. 8.

Еще одной необходимой функцией в измерительном оборудовании является переключение режимов работы (диапазона измерений, коэффициента усиления, вида соединения и проч.), которое ранее выполнялось механически. Например, для измерения напряжения вольтметр подключается к цепи параллельно, в то время как для измерения тока необходимо последовательное соединение измерительного оборудования с цепью. В некоторых приборах для реализации такого переключения необходимо было использовать другой вход, механически переключив измерительную линию. Это довольно неудобно в случае частой смены измеряемого параметра, поэтому применение оптоэлектронных реле может эффективно решить данную проблему, значительно увеличив удобство пользования прибором.

С другой стороны, в системах сбора данных необходимость использования оптореле часто обусловлена большой вероятностью повреждения чувствительных входных цепей измерительной аппаратуры (аналогово-цифровых и частотных преобразователей). Такой нежелательный эффект может возникать, например, в связи с большой длиной проводников от первичного преобразователя до измерительного элемента, что способствует наведению электростатических помех. Кроме того, существенное влияние могут оказать как переходные процессы во время включения/выключения аппаратуры, так и ошибки в ее использовании, например, присутствие входного сигнала большой амплитуды при пропадании напряжения питания.

Все эти факторы приводят к необходимости использования гальванической развязки. Как пример можно привести реле серии PVT312L со встроенной активной схемой подавления пульсации токов, которая может быть эффективно использована в устройствах, сопряженных с длинными проводниками или работающих в сложных электромагнитных условиях (проводные системы экологического мониторинга предприятий, индустриальные измерительные преобразователи).

Телекоммуникации. Применение оптореле в области связи также является перспективным направлением. Есть несколько уникальных функций, для реализации которых можно эффективно использовать преимущества оптореле. Сюда относятся гальваническая развязка между модемом и телефонной линей для предотвращения повреждений, связанных с электростатическими (в т.ч. грозовыми) разрядами; реализации специфических функций телефонного оборудования (импульсный и тоновый набор, подключение и определение состояния линии) и т.п.

Заключение

В последние годы наблюдается тенденция к постоянному росту спроса на оптоэлектронные реле компании IR. Главными потребителями твердотельных реле являются промышленные гиганты нашей страны — приборостроительные и транспортные предприятия, крупные государственные корпорации Ростелеком, Росатом, РЖД. Производители ценят удобство и высокие технические характеристики реле компании IR для индустриального применения.

С другой стороны, постоянно растут требования к надежности радиоэлектронной аппаратуры со стороны военной и авиакосмической промышленности. Вопрос очень актуальный, который требует конкретных технических решений, которые позволят понизить отказы техники в процессе эксплуатации. Ни у кого из специалистов не вызывает сомнения, что твердотельные реле способны повысить надежность аппаратуры специального назначения.

Гальваническая развязка. Оптронная развязка схема

ЧТО ТАКОЕ OPTOCOUPLER

Optocoupler, также известный как оптрон, является радиоэлектронным компонентом, который передаёт электрические сигналы между двумя изолированными электрическими цепями с помощью инфракрасного света. В качестве изолятора, оптрон может предотвратить прохождение высокого напряжения по цепи. Передача сигналов через световой барьер происходит с помощью ИК-светодиода и светочувствительного элемента, например фототранзистора, является основой структуры оптрона. Оптроны доступны в различных моделях и внутренних конфигурациях. Один из наиболее распространённых - ИК-диод и фототранзистор вместе в 4-выводном корпусе, показан на рисунке.

Определённые параметры не должны превышаться в процессе эксплуатации. Эти максимальные значения используются вместе с графиками, чтоб правильно спроектировать режим работы.

На входной стороне, инфракрасный излучающий диод имеет некоторый максимальный прямой ток и напряжение, превышение которого приведёт к сгоранию излучающего элемента. Но и слишком малый сигнал не сможет заставить светиться его, и не позволит передать импульс далее по цепи.

Преимущества оптронов

  • возможность обеспечения гальванической развязки между входом и выходом;
  • для оптронов не существует каких-либо принципиальных физических или конструктивных ограничений по достижению сколь угодно высоких напряжений и сопротивлений развязки и сколь угодно малой проходной емкости;
  • возможность реализации бесконтактного оптического управления электронными объектами и обусловленные этим разнообразие и гибкость конструкторских решений управляющих цепей;
  • однонаправленность распространения информации по оптическому каналу, отсутствие обратной реакции приемника на излучатель;
  • широкая частотная полоса пропускания оптрона, отсутствие ограничения со стороны низких частот;
  • возможность передачи по оптронной цепи, как импульсного сигнала, так и постоянной составляющей;
  • возможность управления выходным сигналом оптрона путем воздействия на материал оптического канала и вытекающая отсюда возможность создания разнообразных датчиков, а также разнообразных приборов для передачи информации;
  • возможность создания функциональных микроэлектронных устройств с фотоприемниками, характеристики которых при освещении изменяются по сложному заданному закону;
  • невосприимчивость оптических каналов связи к воздействию электромагнитных полей, что обусловливает их защищенность от помех и утечки информации, а также исключает взаимные наводки;
  • физическая и конструктивно-технологическая совместимость с другими полупроводниковыми и радиоэлектронными приборами.

Недостатки оптронов

  • значительная потребляемая мощность, обусловленная необходимостью двойного преобразования энергии (электричество - свет - электричество) и невысокими КПД этих переходов;
  • повышенная чувствительность параметров и характеристик к воздействию повышенной температуры и проникающей радиации;
  • временная деградация параметров optocoupler;
  • относительно высокий уровень собственных шумов, обусловленный, как и два предыдущих недостатка, особенностями физики светодиодов;
  • сложность реализации обратных связей, вызванная электрической разобщенностью входной и выходной цепей;
  • конструктивно-технологическое несовершенство, связанное с использованием гибридной непланарной технологии, с необходимостью объединения в одном приборе нескольких - отдельных кристаллов из различных полупроводников, располагаемых в разных плоскостях.

Применение оптронов

  1. В качестве элементов гальванической развязки оптроны применяются: для связи блоков аппаратуры, между которыми имеется значительная разность потенциалов; для защиты входных цепей измерительных устройств от помех и наводок.
  2. Другая важнейшая область применения оптронов - оптическое, бесконтактное управление сильноточными и высоковольтными цепями. Запуск мощных тиристоров, симисторов, управление электромеханическими релейными устройствами. Импульсные блоки питания.
  3. Создание "длинных" оптронов (приборов с протяженным гибким волоконно-оптическим световодом) открыло совершенно новое направление применения изделий оптронной техники - связь на коротких расстояниях.
  4. Различные оптроны находят применение и в радиотехнических схемах модуляции, автоматической регулировки усиления и других. Воздействие по оптическому каналу используется здесь для вывода схемы в оптимальный рабочий режим, для бесконтактной перестройки режима.
  5. Возможность изменения свойств оптического канала при различных внешних воздействиях на него позволяет создать целую серию оптронных датчиков: таковы датчики влажности и загазованности, датчика наличия в объеме той или иной жидкости, датчики чистоты обработки поверхности предмета, скорости его перемещения.

Универсальность оптронов как элементов гальванической развязки и бесконтактного управления, разнообразие и уникальность многих других функций являются причиной того, что сферами применения optocoupler стали вычислительная техника, автоматика, связная и радиотехническая аппаратура, автоматизированные системы управления, измерительная техника, системы контроля и регулирования, медицинская электроника, устройства визуального отображения информации. Подробнее о различных типах оптронов читайте в этом документе.

elwo.ru

Гальваническая развязка: принципы и схему

Гальваническая развязка – принцип электроизоляции рассматриваемой цепи тока по отношению к другим цепям, которые присутствуют в одном устройстве и улучшающий технические показатели. Гальваническая изоляция используется для решения следующих задач:

  1. Достижение независимости сигнальной цепи. Применяется во время подключения различных приборов и устройств, обеспечивает независимости электрического сигнального контура относительно токов, возникающих во время соединения разнотипных приборов. Независимая гальваническая связь решает проблемы электромагнитной совместимости, уменьшает влияние помех, улучшает показатели соотношения сигнал/шум в сигнальных цепях, повышает фактическую точность измерения протекающих процессов. Гальваническая развязка с изолированным входом и выходом способствует совместимости приборов с различными устройствами при сложных параметрах электромагнитной обстановки. Многоканальные измерительные приборы имеют групповую или канальную развязки. Развязка может быть единой для нескольких каналов измерения или поканальной для каждого канала автономно.
  2. Выполнение требований действующего ГОСТа 52319-2005 по электробезопасности. Стандарт регламентирует устойчивость изоляции в электрическом оборудовании управления и измерения. Гальваническая развязка рассматривается как один из комплекса мер по обеспечению электробезопасности, должна работать параллельно с иными методами защиты (заземление, цепи ограничения напряжения и силы тока, предохранительная арматура и т. д.).

Развязка может обеспечиваться различными методами и техническими средствами: гальванические ванны, индуктивные трансформаторы, цифровые изоляторы, электромеханические реле.

Схемы решений гальванической развязки

Во время построения сложных систем для цифровой обработки поступаемых сигналов, связанных с функционированием в промышленных условиях, гальваническая развязка должна решать следующие задачи:

  1. Защищать компьютерные цепи от воздействия критических токов и напряжений. Это важно, если условия эксплуатации предполагают воздействие на них промышленных электромагнитных волн, существуют сложности с заземлением и т. д. Такие ситуации встречаются также на транспорте, имеющем большой фактор человеческого влияния. Ошибки могут становиться причиной полного выхода из строя дорогостоящего оборудования.
  2. Предохранять пользователей от поражения электрическим током. Наиболее часто проблема актуальна для приборов медицинского назначения.
  3. Минимизации вредного влияния различных помех. Важный фактор в лабораториях, выполняющих точные измерения, при построении прецизионных систем, на метрологических станциях.

В настоящее время широкое использование имеют трансформаторная и оптоэлектронная развязки.

Принцип работы оптрона

Схема оптрона

Светоизлучающий диод смещается в прямом направлении и принимает только излучение от фототранзистора. По такому методу осуществляется гальваническая связь цепей, имеющих связь с одной стороны со светодиодом и с другой стороны с фототранзистором. К преимуществам оптоэлектронных устройств относится способность передавать связи в широком диапазоне, возможность передачи чистых сигналов на больших частотах и небольшие линейные размеры.

Размножители электрических импульсов

Обеспечивают требуемый уровень электроизоляции, состоят из передатчиков-излучателей, линий связи и приемных устройств.

Размножители импульсов

Линия связи должна обеспечивать требуемый уровень изоляции сигнала, в приемных устройствах происходит усиление импульсов до значений, необходимых для запуска в работу тиристоров.

Применение электрических трансформаторов для развязки повышает надежность установленных систем, построенных на основании последовательных мультикомплексных каналов в случае выхода из строя одного из них.

Параметры мультикомплексных каналов

Сообщения каналов состоят из информационных, командных или ответных сигналов, один из адресов свободен и используется для выполнения системных задач. Применение трансформаторов повышает надежность функционирования систем, собранных на основе последовательных мультикомплексных каналов и обеспечивает работу устройства при выходе из строя нескольких получателей. За счет применения многоступенчатого контроля передач на уровне сигналов обеспечиваются высокие показатели помехозащищенности. В общем режиме функционирования допускается отправка сообщений нескольким потребителям, что облегчает первичную инициализацию системы.

Простейшее электрическое устройство – электромагнитное реле. Но гальваническая развязка на основе этого прибора имеет высокую инертность, относительно большие размеры и может обеспечить только небольшое число потребителей при большом количестве потребляемой энергии. Такие недостатки препятствуют широкому применению реле.

Гальваническая развязка типа push-pull позволяет значительно уменьшить количество используемой электрической энергии в режиме полной нагрузки, за счет этого улучшаются экономические показатели использования устройств.

Развязка типа push-pull

За счет использования гальванических развязок удается создавать современные схемы автоматического управления, диагностики и контроля с высокой безопасностью, надежностью и устойчивостью функционирования.

plast-product.ru

Гальваническая развязка. Кто, если не оптрон?

Есть в электронике такое понятие как гальваническая развязка. Её классическое определение - передача энергии или сигнала между электрическими цепями без электрического контакта. Если вы новичок, то эта формулировка покажется очень общей и даже загадочной. Если же вы имеете инженерный опыт или просто хорошо помните физику, то скорее всего уже подумали про трансформаторы и оптроны.

Статья под катом посвящена различным способам гальванической развязки цифровых сигналов. Расскажем зачем оно вообще нужно и как производители реализуют изоляционный барьер «внутри» современных микросхем.

Речь, как уже сказано, пойдет о изоляции цифровых сигналов. Далее по тексту под гальванической развязкой будем понимать передачу информационного сигнала между двумя независимыми электрическими цепями.

Зачем оно нужно

Существует три основные задачи, которые решаются развязкой цифрового сигнала.

Первой приходит в голову защита от высоких напряжений. Действительно, обеспечение гальванической развязки - это требование, которое предъявляет техника безопасности к большинству электроприборов. Пусть микроконтроллер, который имеет, естественно, небольшое напряжение питания, задает управляющие сигналы для силового транзистора или другого устройства высокого напряжения. Это более чем распространенная задача. Если между драйвером, который увеличивает управляющий сигнал по мощности и напряжению, и управляющим устройством не окажется изоляции, то микроконтроллер рискует попросту сгореть. К тому же, с цепями управления как правило связаны устройства ввода-вывода, а значит и человек, нажимающий кнопку «включить», легко может замкнуть цепь и получить удар в несколько сотен вольт.Итак, гальваническая развязка сигнала служит для защиты человека и техники.
Не менее популярным является использование микросхем с изоляционным барьером для сопряжения электрических цепей с разными напряжениями питания. Тут всё просто: «электрической связи» между цепями нет, поэтому сигнал логические уровни информационного сигнала на входе и выходе микросхемы будут соответствовать питанию на «входной» и «выходной» цепях соответственно.
Гальваническая развязка также используется для повышения помехоустойчивости систем. Одним из основных источников помех в радиоэлектронной аппаратуре является так называемый общий провод, часто это корпус устройства. При передаче информации без гальванической развязки общий провод обеспечивает необходимый для передачи информационного сигнала общий потенциал передатчика и приемника. Поскольку обычно общий провод служит одним из полюсов питания, подключение к нему разных электронных устройств, в особенности силовых, приводит к возникновению кратковременных импульсных помех. Они исключаются при замене «электрического соединения» на соединение через изоляционный барьер.

Как оно работает

Традиционно гальваническая развязка строится на двух элементах - трансформаторах и оптронах. Если опустить детали, то первые применяются для аналоговых сигналов, а вторые - для цифровых. Мы рассматриваем только второй случай, поэтому имеет смысл напомнить читателю о том кто такой оптрон.Для передачи сигнала без электрического контакта используется пара из излучателя света (чаще всего светодиод) и фотодетектора. Электрический сигнал на входе преобразуется в «световые импульсы», проходит через светопропускающий слой, принимается фотодетектором и обратно преобразуется в электрический сигнал.

Оптронная развязка заслужила огромную популярность и несколько десятилетий являлась единственной технологией развязки цифровых сигналов. Однако, с развитием полупроводниковой промышленности, с интеграцией всего и вся, появились микросхемы, реализующие изоляционный барьер за счет других, более современных технологий. Цифровые изоляторы - это микросхемы, обеспечивающие один или несколько изолированных каналов, каждый из которых «обгоняет» оптрон по скорости и точности передачи сигнала, по уровню устойчивости к помехам и, чаще всего, по стоимости в пересчете на канал.

Изоляционный барьер цифровых изоляторов изготавливается по различным технологиям. Небезызвестная компания Analog Devices в цифровых изоляторах ADUM в качестве барьера использует импульсный трансформатор. Внутри корпуса микросхемы расположено два кристалла и, выполненный отдельно на поллимидной пленке, импульсный трансформатор. Кристалл-передатчик по фронту информационного сигнала формирует два коротких импульса, а по спаду информационного сигнала - один импульс. Импульсный трансформатор позволяет с небольшой задержкой получить на кристалле-передатчике импульсы по которым выполняется обратное преобразование.

Описанная технология успешно применяется при реализации гальванической развязки, во многом превосходит оптроны, однако имеет ряд недостатков, связанных с чувствительностью трансформатора к помехам и риску искажений при работе с короткими входными импульсами.

Гораздо более высокий уровень устойчивости к помехам обеспечивается в микросхемах, где изоляционный барьер реализуется на емкостях. Использование конденсаторов позволяет исключить связь по постоянному току между приемником и передатчиком, что в сигнальных цепях это эквивалентно гальванической развязке.

Если последнее предложение вас взбудоражило.. Если вы почувствовали жгучее желание закричать что гальванической развязки на конденсаторах быть не может, то рекомендую посетить треды вроде этого. Когда ваша ярость утихнет, обратите внимание что все эти споры датируются 2006 годом. Туда, как и в 2007, мы, как известно, не вернемся. А изоляторы с емкостным барьером давно производятся, используются и отлично работают.

Преимущества емкостной развязки заключаются в высокой энергетической эффективности, малых габаритах и устойчивости к внешним магнитным полям. Это позволяет создавать недорогие интегральные изоляторы с высокими показателями надежности. Они выпускаются двумя компаниями - Texas Instruments и Silicon Labs. Эти фирмы используют различные технологии создания канала, однако в обоих случаях в качестве диэлектрика используется диоксид кремния. Этот материал имеет высокую электрическую прочность и уже несколько десятилетий используется при производстве микросхем. Как следствие, SiO2 легко интегрируется в кристалл, причем для обеспечения напряжения изоляции величиной в несколько киловольт достаточно слоя диэлектрика толщиной в несколько микрометров.На одном (у Texas Instruments) или на обоих (у Silicon Labs) кристаллах, которые находятся в корпусе цифрового изолятора, расположены площадки-конденсаторы. Кристаллы соединяются через эти площадки, таким образом информационный сигнал проходит от приемника к передатчику через изоляционный барьер.Хотя Texas Instruments и Silicon Labs используют очень похожие технологии интеграции емкостного барьера на кристалл, они используют совершенно разные принципы передачи информационного сигнала.

Каждый изолированный канал у Texas Instruments представляет собой относительно сложную схему.

Рассмотрим её «нижнюю половину». Информационный сигнал подается на RC-цепочки, с которых снимаются короткие импульсы по фронту и спаду входного сигнала, по этим импульсам сигнал восстанавливается. Такой способ прохождения емкостного барьера не подходит для медленноменяющихся (низкочастотных) сигналов. Производитель решает эту проблему дублированием каналов - «нижняя половина» схемы является высокочастотным каналом и предназначается для сигналов от 100 Кбит/сек. Сигналы с частотой ниже 100 Кбит/сек обрабатываются на «верхней половине» схемы. Входной сигнал подвергается предварительной ШИМ-модуляции с большой тактовой частотой, модулированный сигнал подается на изоляционный барьер, по импульсам с RC-цепочек сигнал восстанавливается и в дальнейшем демодулируется. Схема принятия решения на выходе изолированного канала «решает» с какой «половины» следует подавать сигнал на выход микросхемы.

Как видно на схеме канала изолятора Texas Instruments, и в низкочастотном, и в высокочастотном каналах используется дифференциальная передача сигнала. Напомню читателю её суть.

Дифференциальная передача - это простой и действенный способ защиты от синфазных помех. Входной сигнал на стороне передатчика «разделяется» на два инверсных друг-другу сигнала V+ и V-, на которые синфазные помехи разной природы влияют одинаково. Приемник осуществляет вычитание сигналов и в результате помеха Vсп исключается.

Дифференциальная передача также используется в цифровых изоляторах от Silicon Labs. Эти микросхемы имеют более простую и надежную структуру. Для прохождения через емкостный барьер входной сигнал подвергается высокочастотной OOK (On-Off Keyring) модуляции. Другими словами, «единица» информационного сигнала кодируется наличием высокочастотного сигнала, а «ноль» - отсутствием высокочастотного сигнала. Модулированный сигнал проходит без искажений через пару емкостей и восстанавливается на стороне передатчика.

Поделиться